Aufgabe 1

Betrachten Sie den zweimaligen Würfelwurf mit einem fairen Würfel.

- a) Beschreiben Sie das Experiment mittels eines geeigneten Maßraumes (Ω, \mathcal{F}, P) und geben Sie die Zähldichte der Verteilung P an.
- b) Definieren Sie eine reelle Zufallsvariable X, welche die Anzahl der Würfe beschreibt, in denen der Würfel die Augenzahl 6 zeigt. Leiten Sie die Verteilung von X auf dem Messraum (\mathbb{R}, \mathcal{B}) her und geben Sie die zugehörige Dichte f_X und Verteilungsfunktion F_X an. Skizzieren Sie die beiden Funktionen.

Aufgabe 2

Zeigen Sie, dass die durch

$$f(x) := \begin{cases} x, & x \in \mathbb{Q} \cap [0, 1] \\ 1 - x, & x \in \overline{\mathbb{Q}} \cap [0, 1] \\ 0, & \text{sonst.} \end{cases}$$

auf \mathbb{R} definierte Funktion nicht Riemann-, aber Lebesgue-integrierbar ist. Geben Sie $\int f d\lambda$ explizit an.

Hinweis: Um zu überprüfen, ob f Riemann-integrierbar ist, muss untersucht werden, ob die Oberund Untersummen von f den gleichen Grenzwert besitzen (Zeichnung ist hilfreich).

Aufgabe 3

Sei der Meßraum (\mathbb{R},\mathcal{B}) sowie die meßbare Funktion $f:\mathbb{R}\to\mathbb{R}$ mit

$$\omega \mapsto f(\omega) = \omega \mathbb{1}_{\mathbb{N}}(\omega)$$

gegeben. Berechnen Sie für das Lebesguemaß λ und das Zählmaß μ_Z

a)
$$\int_{[0,n]} f d\lambda$$

b)
$$\int_{[0,n]} f d\mu_Z \text{ für } n \in \mathbb{N}$$

Aufgabe 4

Es sei

$$f_n : \mathbb{R} \to \mathbb{R},$$

 $f_n(x) = x^2 \cdot I_{[-n,n]}(x) + n^2 \cdot I_{(-\infty,-n)\cup(n,\infty)}(x), \quad n \in \mathbb{N}.$

Entscheiden Sie, ob $\lim_{n\to\infty}\int f_n\,d\lambda$ und $\int\lim_{n\to\infty}f_n\,d\lambda$ gleich sind und bestimmen Sie diese Werte.