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The objective of principal components analysis is to transform a set of p variables x1, . . . , xp

into r new variables z1, . . . , zr which account for most of the variation of the original variables.
The number r of the so-called principal components z1, . . . , zr is assumed to be small relative
to p. Classical principal components analysis is based on linear transformations of the original
variables.

1.1 Principal Components for Random Variables
Principal components analysis may be formulated for random variables or observations in a
rather similar way. We will first consider principal components for random variables

1.1.1 Basic Concept
For the random variables form one assumes that xT = (x1, . . . , xp) is a vector of random
variables with mean µT = (µ1, . . . , µp) and covariance cov(x) = Σ.

The first principal component is determined by a weight vector α1 chosen such that

z1 = αT
1 x = α11x1 + · · ·+ α1pxp
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has maximal variance, that is,

var(z1) = αT
1 Σα1 → max

α1

.

under the constraint ||α1|| = 1. The constraint is necessary since the variance could be in-
creased without limit by increasing the components of α1.

For the second principal component z2 = αT
2 x one postulates

var(z2) → max
α2

with the constraints ||α2|| = 1 and αT
1 α2 = 0. The latter constraint is equivalent to postulating

cov(z1, z2) = cov(αT
1 x,α

T
2 x) = αT

1 Σα2 = 0. The further principal components are ob-
tained by looking for weights which maximize the variance under the restriction that the weight
is orthogonal to the weights of the previous principal components.

In summary the objective is to find weights α1, . . . ,αr and corresponding linear combina-
tions

z1 = αT
1 x = α11x1 + · · ·+ α1pxp

...
zr = αT

r x = αr1x1 + · · ·+ αrpxp

such that

var(zj) = αT
j Σαj → max

αj

, j = 1, . . . , p, (1.1)

with the side constraints ||αj || = 1,αT
j αs = 0, s = 1, . . . , j − 1. The second side constraint

is equivalent to postulating that cov(zj , zs) = 0, s = 1, . . . , j − 1.

Principal Components by Maximization of Variance

Find weights α1, . . . ,αp such that for zj = αT
j x

var(zj) = αT
j Σαj → max

αj

with side constraints ||αj || = 1,αT
j αs = 0, s = 1, . . . , j − 1.

1.1.2 Obtaining Solutions
For the first principal component, the problem is to maximize var(αT

1 x) = αT
1 Σα1 subject to

αT
1 α1 = 1. Using Lagrange multiplier λ one considers

φ1(α1) = αT
1 Σα1 − λ(αT

1 α1)

The derivatives of φ(α1)
∂φ1

∂α
= 2Σα1 − 2λα1

∂φ1

∂λ
= αT

1 α1
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yield the equations

Σα1 = λα1, αT
1 α1 = 1

which represent an eigenvalue problem. Thus the eigenvector α1 which corresponds to the
largest eigenvalue λ1 is a solution of the maximization problem.

Consider now maximization of var(α2
Tx) = αT

2 Σα2 subject to constraints ||α1|| = 1,
αT

2 α1 = 0. one considers the function with Lagrange multipliers for the constraints

φ2(α2) = αT
2 Σα2 + λ(αT

1 α2 − 1) + γ(αT
1 α2)

The derivatives ∂φ2/∂α2, ∂φ2/∂λ, ∂φ2/∂γ yield the equations

2Σα2 + 2λα2 + γα1 = 0,
αT

1 α2 = 1,
αT

1 α2 = 0.

Multiplication of the first equation with αT
1 (from the left side) yields 2αT

1 Σα2 + γ = 0.
Since α1 is an eigenvector of Σ one has αT

1 Σα2 = αT
2 Σα1 = λ1α

T
2 α1 = 0 yielding γ = 0.

Therefore the first equation has the form

Σα2 = λα2 subject to αT
2 α1 = 0

The solution is the eigenvector α2 for the second largest eigenvector λ2.
Straightforward derivation shows that starting from eigenvector solutions α1, . . . , αs max-

imization of var(αTx) subject to αTα = 1, αTαj = 0, j = 1, . . . , s yields the eigenvector
αs+1 corresponding to the next largest eigenvalue λs+1.

In summary the solutions of the maximization problem are the eigenvectors α1, . . . , αp that
correspond to eigenvalues λ1 ≥ . . . ≥ λp. The spectral decomposition theorem yields that the
symmetric covariance matrix Σ may be written as

Σ = PΛP T

where the columns of the orthogonal matrix P = (α1, . . . ,αp) are the eigenvectors α1, . . . ,αp

of Σ and Ω = diag(λ1, . . . , λp) is a diagonal matrix which has the eigenvalues λ1 ≥ . . . ≥ λp

in the diagonal.
For positive definite covariance matrix Σ all the eigenvalues λ1, . . . , λp are positive. One

obtains the principal components zi = αT
i x, i = 1, . . . , p in vector form by

z = P Tx

where zT = (z1, . . . , zp). The principal components represent uncorrelated linear combina-
tions of the variables. One obtains

cov(z) = P TΣP = Λ

and therefore var(zi) = λi, cov(zi, zj) = 0, i ̸= j.
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Principal Components

The weights of principal components α1, . . . ,αp are found as the
columns of the spectral decomposition

Σ = PΛP T ,

where P = (α1, . . . ,αp), Σ = diag(λ1, . . . , λp).

For the vector of principal components z = P Tx one has

cov(z) = Λ

and for the variation of x and z one has

tr(cov(x)) = tr(cov(z))

| cov(x)| = | cov(z)|

1.1.3 Variation and Explained Variation
Variation of random vectors may be measured in several ways. A simple measure of the varia-
tion in vector x is the total variation. For correlated variables x1, . . . , xp one obtains

tvar(x) =

p∑
i=1

var(xi) = tr(Σ)

By considering

tr(Σ) = tr(PΛP T ) = tr(ΛP TP ) = tr(Λ) =

p∑
i=1

var(yi) = tvar(y)

one obtains that the total variation of x is the same as the total variation of the principal com-
ponents y, that is,

p∑
i=1

var(xi) =

p∑
i=1

var(yi).

A more general measure of variation in vector y is the generalized variance given as determined
| cov(x)|. Comparison of the generalized variance of x and the principal components y yields

| cov(x)| = |Σ | = |PΛP T | = |P ||Λ||P T | = |Λ| = | cov(y)|

since P is an orthogonal matrix and therefore |P ||P T | = 1. In summary one has

| cov(x)| = | cov(y)|.

One may wonder if all principal components are necessary. Their ordering var(y1) = λ1 ≥
. . . ≥ var(yp) = λp suggests to consider which part of the variation is explained by the first r
principal components z1, . . . , zr.
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A simple measure for the explained variation is the proportion of total variation

t(r) =

∑r
i=1 var(yi)∑p
i=1 var(yi)

=
λ1 + . . .+ λr

λ1 + . . .+ λp
.

Thus, if, for example, t(2) = 0.8 80 percent of the total variation is explained by the first
principal component.

1.1.4 Some Geometry and the Normal Distribution
The components of a point xT = (x1, . . . , xp) from Rp can be seen as the coordinates when
the Rp is spanned by the unit vectors eT1 = (1, 0, . . . , 0), . . . , eTp = (0, . . . , 0, 1) because x is
given by

x = x1e1 + · · ·+ xpep.

The corresponding vector of principal components is given by z = P Tx, which is equivalent
to x = Pz. Therefore the point x is also represented by

x = Pz = (a1 . . .ap)z = z1a1 + · · ·+ zpap.

Therefore, z1, . . . , zp are the coordinate values when the Rp is spanned by the vectors a1, . . . ,ap.
Thus the principal components describe the same point but use a different coordinate system.
The system of basis vectors used by principal components a1, . . . ,ap is orthogonal as the com-
monly used system of unit vectors e1, . . . , ep.

The multivariate normal distribution with mean zero has the density

f(x) =
1

(2π)p/2 | Σ |1/2
exp

{
−1

2
xTΣ−1x

}
.

Let us consider the spectral decomposition of Σ given by Σ = PΛP T . Since P is orthogonal
the inverse of Σ is given by Σ−1 = PΛ−1P T . Therefore the relevant part of the density is

xTΣ−1x = xTPΛ−1P Tx = zTΛ−1z =

p∑
i=1

(
zi√
λi

)2.

That means all points that have the same value of the density, that is, xTΣ−1x = c for some
fixed value c can also be described as the points that fulfill

p∑
i=1

(
zi√
λi

)2 = c.

These points describe in the coordinates z1 . . . , zp an ellipsoid with lengths
√
λic on the axes.

1.2 Principal Components for Observations
For observations the problem has to be slightly modified. Let x1, . . . ,xn be vector valued
observations, xT

i = (xi1, . . . , xip), a linear transformation of the observations x1, . . . ,xn by
use of vector αj yields the observations

zij = αT
j xi, i = 1, . . . , n.
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The empirical variance of the observations z1j , . . . , znj is given by

s2j =
1

n

∑
j

(zij − z̄j)
2 = αT

j Sxαj ,

where z̄j = 1
n

∑n
i=1 zij and Sx = 1

n

∑n
i=1(xi − x̄)(xi − x̄)T is the empirical covariance

matrix computed from the data x1, . . . ,xn.
The principal components for observations are then obtained by finding vectors α1, . . . ,αr

such that

s2j = αT
j Sxαj → max

αj

(1.2)

under the constraints ||αj || = 1,αT
j αs = 0, s = 1, . . . , j − 1. Thus the only difference

between (1.1) and (1.2) is that the covariance matrix Σ is replaced by the empirical covariance
matrix Sx.

Principal Components by Maximization of Empirical Variance

Find weights α1, . . . ,αr such that for zj = αT
j xi

var(zj) = αT
j Sxαj → max

αj

with side constraints ||αj || = 1,αT
j αs = 0, s = 1, . . . , j.

The problem of maximizing the empirical covariance S is formally the same as maximizing
the covariance Σ. Therefore the solution is given by the spectral decomposition of S

S = QLQT

where the columns of Q = (q1 . . . , qp) are the eigenvectors of S and L = diag(l1, . . . , lp) is a
diagonal matrix with the eigenvalues l1 ≥ . . . ≥ lp of S. By use of q1, . . . , qp the original data
x1, . . .xn are transformed to the vector of principal components

zi = QTxi.

It is easy to show that for the empirical covariance matrix for data z1, . . . zn one obtains

Sz =
1

n

n∑
i=1

(zi − z̄)(zi − z̄)T = L.

Thus the principal components are uncorrelated and the empirical variance of the jth principal
component is given by s2j = lj . Moreover, in analogy to the decomposition of the underlying
covariance matrix Σ one obtains for the empirical covariance matrix:

tr(Sx) = tr(Sz), |Sx| = |Sz|.
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Principal Components for Observations

The vector valued principal components are given by zi = QTxi,
i = 1, . . . , n, where

Sx = QLQT

is the spectral decomposition with Q = (q1 . . . qp) containing the
eigenvectors of Sx as columns and L = diag(l1, . . . , lp) being the
diagonal matrix of eigenvalues of Sx.

Sz = 1
n−1

∑n
i=1(zi − z̄)(zi − z̄)T = L

tr(Sx = tr(Sz)), |Sx| = |Sz|

1.3 Estimation
Principal components in the random variable and the observation case are based on the spectral
decompositions

Σ = PΛP T and Sx = QLQT .

The corresponding eigenvectors and eigenvalues qi, li from Q and L may be considered as
estimates of pi, λi from P and Λ. If one assumes that observations x1, . . . ,xn are iid and
normally distributed one obtains for nSx

nSx ∼ W (Σ, n− 1).

If for the underlying eigenvalues λ1 > . . . > λp holds, it can be shown that asymptotically

(n → ∞) for the vector λ̂
T
= (l1, . . . , lp) one has

√
n(λ̂− λ) ∼ N(0, 2Λ2).

For α̂j = qj one obtains

√
n(α̂j −αj) ∼ N(0, λj

p∑
s = 1
s ̸= j

λs

(λj − λs)2
αsα

T
s )

(see Anderson, 2003, Section 13.5).


