# ------------------------------------------------------------------------------ # -------- Übung zur Vorlesung Kategoriale Daten ------------------------------- # -------- R Code / Blatt 6 ------------------------------- # ------------------------------------------------------------------------------ ################################################################################ # # -------- Aufgabe 21 ---------------------------------------------------------- # ################################################################################ # b) bike <- read.table("bike.dat", header=T) # Poisson-Modell model1a <- glm(y ~ lecture + offset(log(time)), family=poisson, data=bike) summary(model1a) # äquivalente Schreibweise model1b <- glm(y ~ lecture, offset=log(time), family=poisson(link=log), data=bike) summary(model1b) # Quasi-Poisson-Modell model2 <- glm(y ~ lecture, offset=log(time), family=quasipoisson(link=log), data=bike) summary(model2) ################################################################################ # # -------- Aufgabe 22 ---------------------------------------------------------- # ################################################################################ library(pscl) data(bioChemists) help(bioChemists) attach(bioChemists) # a) # Verteilung der Anzahl an Artikeln plot(as.numeric(names(table(art))),table(art),type="h", xlab="articles", ylab="freq") # nach Geschlecht boxplot(art ~ fem, varwidth=T) # nach Familienstand boxplot(art ~ mar, varwidth=T) # nach Kinderzahl boxplot(art ~ kid5, varwidth=T) # nach Prestige plot(phd,art) lines(lowess(phd,art)) # nach Betreuer plot(ment,art) lines(lowess(ment,art)) # c) # Poisson-Modell poissonModell <- glm(art ~ fem + mar + kid5 + phd + ment, family=poisson, data=bioChemists) summary(poissonModell) # Quasi-Poisson-Modell qpoissonModell <- glm(art ~ fem + mar + kid5 + phd + ment, family=quasipoisson, data=bioChemists) summary(qpoissonModell) # d) # Negativbinomial-Modell negbinomial <- glm.nb(art ~ fem + mar + kid5 + phd + ment, link=log, data=bioChemists) summary(negbinomial) # f) help(zeroinfl) # Poisson - Binomial(Logit-Link) zeroinflPBl <- zeroinfl(art ~ fem + mar + kid5 + phd + ment, data=bioChemists, dist="poisson", link="logit") summary(zeroinflPBl) # Poisson - Binomial(Probit-Link) zeroinflPBp <- zeroinfl(art ~ fem + mar + kid5 + phd + ment, data=bioChemists, dist="poisson", link="probit") summary(zeroinflPBp) # Negativbinomial - Binomial(Logit-Link) zeroinflNBl <- zeroinfl(art ~ fem + mar + kid5 + phd + ment, data=bioChemists, dist="negbin", link="logit") summary(zeroinflNBl) # Negativbinomial - Binomial(Probit-Link) zeroinflNBp <- zeroinfl(art ~ fem + mar + kid5 + phd + ment, data=bioChemists, dist="negbin", link="probit") summary(zeroinflNBp) zeroinflPBl2 <- zeroinfl(art ~ fem + mar + kid5 + phd + ment|fem + mar, data=bioChemists, dist="poisson", link="logit") summary(zeroinflPBl2) # h) help(hurdle) # Poisson - Poisson hurdlePP <- hurdle(art ~ fem + mar + kid5 + phd + ment, data=bioChemists, dist="poisson", zero.dist="poisson") summary(hurdlePP) # Test, ob Koeffizientenvektoren unterhalb und oberhalb der Hürde gleich sind: # H_0: \beta_1 = \beta_2 wird abgelehnt hurdletest(hurdlePP) # Negativbinomial - Poisson hurdleNP <- hurdle(art ~ fem + mar + kid5 + phd + ment, data=bioChemists, dist="negbin", zero.dist="poisson") summary(hurdleNP) # Poisson - Binomial hurdlePB <- hurdle(art ~ fem + mar + kid5 + phd + ment, data=bioChemists, dist="poisson", zero.dist="binomial", link="logit") summary(hurdlePB) # Negativbinomial - Binomial hurdleNB <- hurdle(art ~ fem + mar + kid5 + phd + ment, data=bioChemists, dist="negbin", zero.dist="binomial", link="logit") summary(hurdleNB) HurdlePP2 <- hurdle(art ~ fem + mar + kid5 + phd + ment|fem + mar, data=bioChemists, dist="poisson", zero.dist="poisson") summary(HurdlePP2) # i) # hier am leichtesten zu bestimmen: AIC AIC(poissonModell,negbinomial,hurdlePP,hurdleNP,hurdlePB,hurdleNB, zeroinflPBl,zeroinflPBp,zeroinflNBp,zeroinflPBl2)