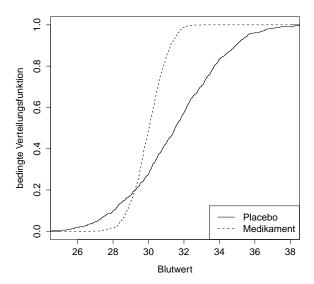
Hinweis: Nach einer kurzen Wiederholung der Quantilregression soll diese Aufgabe im Tutorium selbstständig bearbeitet werden. Die Lösung wird am Ende vorgestellt.

Aufgabe 5 (Quantilregression mit binärer Einflussgröße)

Bei 1750 Patienten wurde ein Blutwert y_i , $i=1,\ldots,1750$, gemessen. Von diesen Patienten wurden 750 zuvor mit einem Placebo $(x_i=0)$ und 1000 mit einem Medikament $(x_i=1)$ behandelt. Für die Blutwerte ergaben sich die folgenden empirischen bedingten Verteilungsfunktionen:



Mit Hilfe des Modells

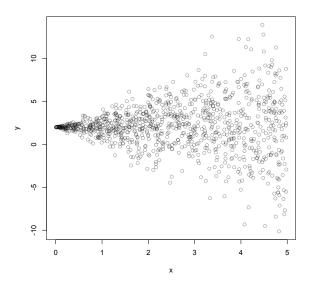
$$y_i = \beta_{\tau 0} + \beta_{\tau 1} x_i + \varepsilon_{\tau i}$$
 mit $F_{\varepsilon_{\tau i}}(0) = \tau$ für $i = 1, \dots, 1750$

soll nun für festes $\tau \in (0,1)$ das τ -Quantil der Blutwerte in Abhängigkeit von der Behandlungsmethode geschätzt werden.

- (a) Skizzieren Sie den geschätzten Behandlungseffekt $\hat{\beta}_{\tau 1}$ in Abhängigkeit von $\tau \in (0,1)$ und interpretieren Sie das Ergebnis für $\tau = 0.2$ und $\tau = 0.5$.
- (b) Würde man im hier vorliegenden Fall ein vergleichbares Ergebnis mittels klassischer linearer Regression erzielen? Begründen Sie Ihre Antwort.

Aufgabe 6 (Quantilregression mit stetiger Einflussgröße)

Bei 1000 Patienten wurde ein Blutwert y_i , i = 1, ..., 1000, gemessen. Zusätzlich wurde jeweils das Alter x_i der Patienten erhoben. Für die beobachteten Blutwerte ergab sich der folgende Scatterplot in Abhängigkeit vom Alter:



Mit Hilfe des Modells

$$y_i = \beta_{\tau 0} + \beta_{\tau 1} x_i + \varepsilon_{\tau i}$$
 mit $F_{\varepsilon_{\tau i}}(0) = \tau$ für $i = 1, \dots, 1000$

soll nun für festes $\tau \in (0,1)$ das τ -Quantil der Blutwerte in Abhängigkeit vom Alter geschätzt werden.

- (a) Skizzieren Sie $Q_{\tau}(y_i|x_i)$, das τ -Quantil von y, in Abhängigkeit von x für $\tau=0.1$, $\tau=0.5$ und $\tau=0.9$ in den Plot.
- (b) Bestimmen Sie visuell den geschätzten Intercept $\hat{\beta}_{\tau 0}$ sowie den geschätzten Alterseffekt $\hat{\beta}_{\tau 1}$ für $\tau = 0.1$, $\tau = 0.5$ und $\tau = 0.9$ und interpretieren Sie das Ergebnis.
- (c) Würde man im hier vorliegenden Fall ein vergleichbares Ergebnis mittels klassischer linearer Regression erzielen? Begründen Sie Ihre Antwort.