
Manuel J. A. Eugster

Programming R

Chapter 5: Control structures

Last modification on May 21, 2012

Draft of the R programming book I always wanted to read
http://mjaeugster.github.com/progr

Licensed under the CC BY-NC-SA

http://mjaeugster.github.com/progr
http://creativecommons.org/licenses/by-nc-sa/3.0/

5 Control structures
Control the flow.

The main literature for this section is:

• An Introduction to R by R Core Team (2012a)

• R Language Definition by R Core Team (2012b)

5.1 Control flow

R provides basic control-flow constructs; they allow to define the order in which the
individual statements of a script or function are evaluated.

The main control flow statements are (cf. Wikipedia, 2012):

Choices: execute a set of statements only if some condition is met;

Loops: execute a set of statements zero or more times, until some condition is met;

Functions: execute a set of distant statements, after which the flow of control usually
returns;

Ending: stop the program, preventing any further execution;

Exceptions: handle the occurrence of exceptions;

See Chapter 4 for a detailed introduction into functions.

5.2 Choices

The if-else statement conditionally evaluates two statements. The formal syntax is

> if (condition) {

+ statement1

+ } else {

+ statement2

+ }

2

First, condition is evaluated. If it is TRUE then statement1 is evaluated; if it is FALSE
then statement2 is evaluated.

A simple example is the sign function which returns −1 if the number x is smaller than
0 and +1 if the number x is greater than zero:

> sign <- function(x) {

+ if (x > 0) { # condition1

+ y <- +1 # statement1

+ } else { # !condition1

+ y <- -1 # statement2

+ }

+ y

+ }

>

> c(sign(-10), sign(pi), sign(10))

[1] -1 1 1

The function, however, is not correctly defined for x = 0:

> sign(0)

[1] -1

According to the mathematical definition of the sign function the return value should
be 0. In order to achieve this, we need nested if/else statements:

> sign <- function(x) {

+ if (x > 0) { # condition1

+ y <- +1 # statement1

+ } else if (x < 0) { # condition2

+ y <- -1 # statement2

+ } else { # !(condition1 | condition2)

+ y <- 0 # statement3

+ }

+ y

+ }

>

> c(sign(-10), sign(0), sign(10))

[1] -1 0 1

3

Note that if the conditions in if-else statements are vectors, only the first element is
used; therefore vectorized computation is not possible with our implementation of the
sign function:

> sign(c(-1.2, exp(1), 13.873))

Warning message: the condition has length > 1 and only the first element will be used

Warning message: the condition has length > 1 and only the first element will be used

[1] -1

See ifelse() for a vectorized conditional statement.

Note that in some cases the function switch() allows to write nested if-else statements
more elegantly (multiway branches).

5.3 Loops

A loop is a sequence of statements which is specified once but which may be carried out
several times in succession. R has three statements that provide explicit looping (see
?Control); here we discuss the for and while loops.

The most common one (in my feeling) is the count- and collection-controlled for loop;
its formal syntax is

> for (var in seq) {

+ statement1

+ }

where var is the loop variable, seq is a vector expression (often a sequence like 1:20)
and statement1 is evaluated as often as there are elements in seq.

A simple example is a function which sums the elements of a vector:

> adder <- function(x) {

+ y <- 0

+ for (e in x) { # var in seq

+ y <- y + e # statement1

+ }

+ y

+ }

4

>

> adder(1:10)

[1] 55

The loop body is executed for each element of x; in the first iteration e is x[1], in the
second iteration e is x[2], and so on.

In case of the for loop, the number of iterations is defined (i.e., the number of elements
in seq). This is not always true, sometimes we want to iterate until a specific condition
is true—the condition-controlled while (and repeat) loop allow this. Its formal syntax
is

> while (condition) {

+ statement1

+ }

While condition is TRUE, statement1 is executed.

A simple example is a function which adds up random numbers between 1 and 100 until
the sum is greater than a number x:

> radder <- function(x) {

+ y <- 0

+ i <- 0

+ while (y <= x) { # condition

+ y <- y + sample(100, 1) # state...

+ i <- i + 1 # ...ment1

+ }

+ c(x = x, i = i, y = y)

+ }

>

> set.seed(1234)

> radder(20)

x i y

20 2 75

> radder(831)

x i y

831 16 837

5

Beware of creating infinite loops, i.e., loops where condition is always TRUE; e.g.,

> x <- 1

> while (x > 0) {

+ x <- x + 1

+ }

The escape key ESC interupts the execution in such a case.

5.4 Ending

The return statement exits from the current function, and control flow returns to where
the function was evaluated. Its formal syntax is

> return(value)

where value is the the R object which is returned to the caller (either an other function
or the user).

This now allows us to capture an “unfavorable” input, namely

> radder(Inf)

which leads to an infinite loop.

> radder <- function(x) {

+ if (x == Inf) {

+ return(c(x = x, i = Inf, y = Inf))

+ }

+

+ y <- 0

+ i <- 0

+ while (y <= x) {

+ y <- y + sample(100, 1)

+ i <- i + 1

+ }

+ c(x = x, i = i, y = y)

+ }

>

> radder(Inf)

x i y

Inf Inf Inf

6

Note that stopifnot() and stop() also stop the evaluation of the current function and
exit it with an error message.

5.5 Exceptions

Exceptions are anomalous or exceptional situations requiring special processing during
computation (e.g., an error occurs in a called function). The process of responding to
such exceptions is called exception handling.

R provides tryCatch() for handling conditions. Its formal syntax is

> tryCatch(expr, ...)

Error: ’...’ used in an incorrect context

where expr is evaluated and might fail. The programmer then has the change to define
handlers for the possible problems.

For an example let us implement a function which draws n random numbers between
−0.5 and 1, draws an error if the sum of these numbers is smaller than 0, and otherwise
returns the sum.

> f <- function(n) {

+ x <- runif(n, min = -0.5, max = 1)

+ if (sum(x) < 0) {

+ stop("Sorry, sum(x) < 0")

+ }

+ sum(x)

+ }

>

> set.seed(1234)

> f(10)

[1] 2.338

> f(10)

[1] 1.82

Now, we use this function in another function which implements a simulation with m
replications. However, we do not want that the function stops when f throws an error—
we just want to ignore the error and continue with the remaining iterations.

7

> g <- function(n, m) {

+ y <- numeric(length = m)

+

+ for (i in seq(length = m)) {

+ y[i] <- tryCatch(f(n),

+ error = function(e) {

+ warning("Error in f(); using NA instead.")

+ NA_real_

+ })

+ }

+ y

+ }

>

> set.seed(1222)

> g(10, 10)

[1] 1.344 1.628 3.297 3.214 1.588 2.835 3.933 4.026 2.210 3.473

> g(10, 10)

Warning message: Error in f(); using NA instead.

Warning message: Error in f(); using NA instead.

[1] 2.1004 3.0961 2.4744 3.3155 1.3407 4.8220 NA 2.5773 0.9176 NA

This is especially useful in longer simulations with a huge number of iterations, where
the error is catched (and saved) but the execution is continued.

8

Bibliography

John Chambers. Software for Data Analysis: Programming with R. Springer, 2008.
ISBN 9780387759357.

R Core Team. An Introduction to R, 2012a. URL http://cran.r-project.org/doc/

manuals/R-intro.html.

R Core Team. The R language definition, 2012b. URL http://cran.r-project.org/

doc/manuals/R-lang.html.

Wikipedia. Control flow. Wikipedia entry, accessed on 2012-05-21, 2012. URL http:

//en.wikipedia.org/wiki/Control_flow.

9

http://cran.r-project.org/doc/manuals/R-intro.html
http://cran.r-project.org/doc/manuals/R-intro.html
http://cran.r-project.org/doc/manuals/R-lang.html
http://cran.r-project.org/doc/manuals/R-lang.html
http://en.wikipedia.org/wiki/Control_flow
http://en.wikipedia.org/wiki/Control_flow

	Control structures
	Control flow
	Choices
	Loops
	Ending
	Exceptions

