Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik

Dozent: Fabian Scheipl Material: H. Küchenhoff

LMU München

Termine

Schwesterveranstaltung: Einführung in die statistische Software

Dr. Cornelia Oberhauser, Dipl. Stat. Micha Schneider

Mo. 12-14h, Hauptgebäude D 209 am 31.10., 21.11., 28.11., 5.12.

Übung 12.-18.12.

Hausübung 19.12. - 20.1. (verpflichtend für Studierende der Statistik)

Termine

Homepage:

https://www.elab.moodle.elearning.lmu.de/course/view.php

Vorlesung: Dr. Fabian Scheipl

Mo. 12-14h, Hauptgebäude D 209 (nicht jede Woche!)

Mi. 12-14h, Hauptgebäude E 004

Übung: Elizabeth Heller, M.A., M.Sc.

Do. 10-12h (Gruppe 1) / 12-14h (Gruppe 2), Hauptgebäude D 209

(ca. 14-tägig)

Tutorium: *Johanna Völkl, B.Sc.* Mi. 8-10h, Hauptgebäude A 014

(ca. 14-tägig)

2

Hilfsmittel

Programmpaket ${f R}$

- Frei verfügbar, *open source*: r-project.org
- Kurse im Rahmen der Veranstaltung "Statistische Software"
- *lingua franca* der Statistik
 - (fast) jede denkbare statistische Methode implementiert
 - aktuelle Forschung geht in Form von Zusatzpaketen ("packages") ein
 - immer wichtiger / etablierter auch in Wirtschaft, Verwaltung, . . .
- Obacht, steile Lernkurve: befehlsbasiert, keine GUI!
- Editor RStudio (rstudio.com, frei verfügbar)
- Interaktives R-Kursprogramm: (swirl, auf englisch)

2

Literatur

L.Fahrmeir, R.Künstler, I.Pigeot, G.Tutz: Statistik - Der Weg zur Datenanalyse

Springer-Verlag, 7. Auflage, 2009

H.Toutenburg, C.Heumann:

Deskriptive Statistik - Eine Einführung in Methoden und

Anwendungen mit R und SPSS

Springer-Verlag, 2009

(s.a. Moodle-Seite)

5

Vorlesungsplanung

- 1. Einführung, Beispiele, Geschichte
- 2. Grundlagen der Datenerhebung: Messung, Skalenniveaus
- 3. Typen von Studien, Auswahlverfahren
- 4. Univariate deskriptive Statistik 1: Häufigkeiten und graphische Darstellungen, kumulierte Verteilung, Lage- und Streuungsparameter
- Univariate deskriptive Statistik 2: Boxplots, Schiefe und Wölbung, Kerndichteschätzung
- 6. Kontingenztafeln, Zusammenhangsmaße für nominalskalierte Merkmale, Plots
- 7. Rangkorrelationskoeffizient, Zusammenhänge bei quantitativen Merkmalen, Bravais-Pearson-Korrelationskoeffizient
- 8. Kendall's Tau, Invarianzeigenschaften
- 9. Grafische Darstellung von Zusammenhängen
- 10. Regression (lineare Einfachregression, Streuungszerlegung)
- 11. Multiple Regression, Scheinkorrelation
- 12. Interaktive Grafik

Prüfungsleistung

- 6 ECTS
- Prüfungsleistung je nach HF:
 - **Statistik**: Klausur + *-Übungsaufgaben (> 50%) + Hausübung bestanden
 - Informatik: Klausur + *-Übungsaufgaben (> 50%)
 - Mathematik: Klausur
- Klausur am Ende des Semesters (8.2.2017 14:00h, 90 min):
 - Taschenrechner
 - open book: alle Unterlagen, Bücher, Notizen, ... zugelassen
- Note = Klausurnote

(

Inhalt

Einführung: Was ist Statistik?

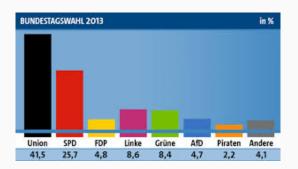
Datenerhebung und Messung

Einführung: Was ist Statistik?

9

Beispiel 1: Bundestagswahl 2013

Ziele:

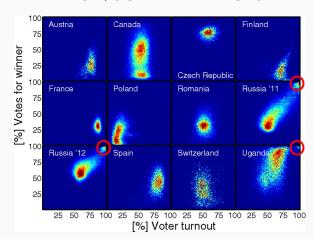

- Schluss von den Befragungsdaten auf das Endergebnis
- Analyse von Wahlverhalten durch weitere Fragen

Beispiel 1: Bundestagswahl 2013

Prognose 18:00 Infratest Dimap (ARD):

CDU/CSU	SPD	FDP	Linke	Grüne	AFD
42,0	26,0	4,7	8,5	8,0	4,9

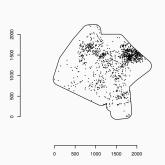
Ergebnis:

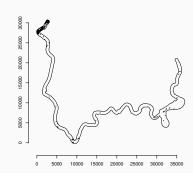


http://wahl.tagesschau.de/wahlen/2013-09-22-BT-DE/index.shtml Basis: Nachwahlbefragung 100 000 Wahlberechtigte

10

Beispiel 2: Wahlfälschung

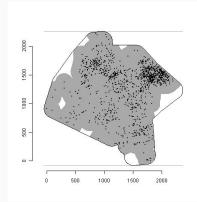

Einfache Idee: Untersuche Zusammmenhang zwischen Wahlergebnis (Stimmenanteil des Siegers) gegen die Wahlbeteiligung.

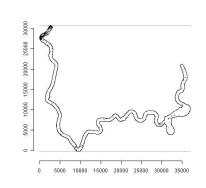


P. Klimek, Y. Yegorov, R. Hanel, S. Thurner (2012). Statistical detection of systematic election irregularities. *PNAS* 109(41):16469–16473.

Beispiel 3: Analyse von Daten zu Bombentrichtern

StaBLab-Projekt mit H. Küchenhoff, M. Höhle und M. Mahling


M. Mahling, M. Hoehle, H. Küchenhoff (2013). Determining high-risk zones for unexploded World War II bombs by using point process methodology. *Journal of the Royal Statistical Society Series C-Applied Statistics* 62(2):181-199.


13

Lösung

- 1. Intensitätsschätzung mit Kernmethoden
- 2. Cut-off Wert der Sicherheitszone aus Annahme zum Anteil der Blindgänger

Sicherheitszonen:

Ziele und Methoden

- Räumliche Punktmuster analysieren
- Effiziente Risikoabschätzung
- Algorithmus zur Bestimmung von Sicherheitszonen bei gegebenen Risikoparametern
- Ausweisung von Risikozonen

14

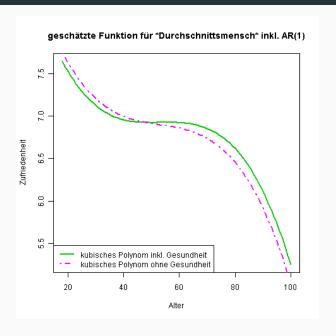
Beispiel 4: Lebenszufriedenheit und Alter

Gibt es eine Midlife Crisis?

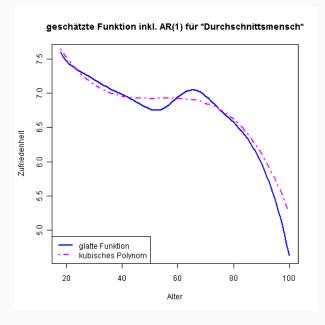
- Analysen von Panel-Daten zur subjektiven Lebenszufriedenheit mit semiparametrischen Regressionsmodellen.
- Forschungsarbeit von Andrea Wiencierz mit Helmut Küchenhoff, Sonja Greven, Christoph Wunder

C. Wunder, A. Wiencierz, J. Schwarze, and H. Küchenhoff (2013). Well-being over the Life Span: Semiparametric evidence from British and German Longitudinal Data. *Review of Economics and Statistics* 95(1):154–167.

A. Wiencierz, S. Greven, and H. Küchenhoff (2011). Restricted likelihood ratio testing in linear mixed models with general error covariance structure. *Electronic Journal of Statistics* 5:1718–1734.


Datengrundlage

- Daten stammen aus den Haushaltsstichproben A (Westdeutsche) und C (Ostdeutsche) des Sozio-ökonomischen Panels (SOEP)
- für die ausgewählten Modellvariablen liegen Beobachtungen aus den Jahren 1992, 1994 bis 2006 vor
- durchschnittliche Anzahl von Beobachtungen pro Person: 7.8
- in die Modellberechnungen gingen 102 708 vollständige Beobachtungen von 13 224 Individuen ein
- Anzahl Beobachtungen pro Jahr:


1992	1994	1995	1996	1997	1998	1999
8 145	7 720	7 943	7 606	8 052	7 550	7 403
2000	2001	2002	2003	2004	2005	2006
7 628	7 092	7 068	7 000	6 876	6 543	6 082

17

Ergebnisse ohne Gesundheitsvariable

Ergebnis für Alterseffekt

18

Ziele und Methoden

- Zusammenhänge analysieren
- Komplexe Einflüsse
- Flexibles Modell

19

20

Beachte: Deutlich stärkerer Abfall ohne adjustieren nach Gesundheit

Beispiel 5: Mineralwasserstudie

Studie in Zusammenarbeit mit Prof. Adam (LMU)

Fragestellung: Schmeckt mit Sauerstoff angereichertes Mineralwasser besser als gewöhnliches Mineralwasser ?

- Doppel-Blindstudie
- Kontroll–Gruppe: zweimal das gleiche Wasser ohne O₂
- Verum–Gruppe: Beim zweiten Mal mit O₂ angereichertes Mineralwasser

Ergebnis (Clausnitzer et al., 2004):

- Placebo: 76% gaben an, dass das zweite Wasser anders schmeckt
- Verum : 89 % gaben an, dass das zweite Wasser anders schmeckt

Signifikanter Effekt \rightarrow Zulassung

21

Beispiel 6: Umweltzone und Feinstaubbelastung

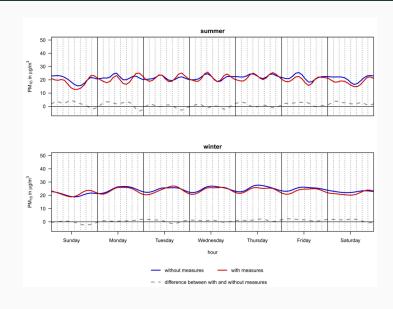
Wirkt die Umweltzone?

Einfacher Ansatz: Vergleiche Mittelwerte vor und nach der Einführung von Umweltzone und Fahrverbot

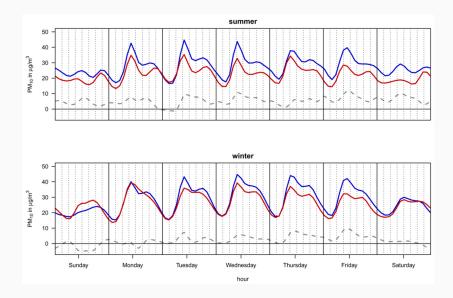
Probleme:

- Grundbelastung ohne Autoverkehr kann sich ändern
- Starke Wettereinflüsse
- Schwankungen über Tag und Jahreszeit

Daher: Regressionsmodell mit Referenzstation, Wetter, Tagesverlauf


V. Fensterer, H. Küchenhoff, V. Maier, H.-E. Wichmann, S. Breitner, A. Peters, J. Gu, and J. Cyrys (2014). Evaluation of the impact of low emission zone and heavy traffic ban in Munich (Germany) on the reduction of PM_{10} in ambient air. *International Journal of Environmental Research and Public Health* 11(5):5094-5112.

Ziele und Methoden


- Randomisierte Studie (Doppelblind)
- Entscheidungsfindung durch statistischen Test
- Quantifizierung des Effekts

22

Wirkung der Umweltzone: Lothstrasse

Wirkung der Umweltzone: Prinzregentenstrasse

25

Beispiele Informatik

- A-B-Testing von Websitedesigns, User Interfaces
- Zugriffsstatistiken auf Webserver
- Resourcenplanung von Netzwerken und Servern

Weitere Beispiele

- Klinische Studien
- Epidemiologische Studien
- Qualitätskontrolle
- Marktforschung
 - Einschaltquoten
 - Bewertung und Vergleich von Produkten gleichen Typs aber verschiedener Produzenten durch Verbraucher (Waschmittel, Kaffee, Schokolade, usw.)
 - Online-Tracking-Daten: Cookies, Userprofile, Websitenutzung
- Sportstatistik
- Analyse von Genexpressions- oder -sequenzdaten
- Netzwerkanalysen
- Mustererkennung ("'Pattern recognition"'): Spamfilter, Customer Churn, . . .

26

Was ist Statistik?

Statistik als Wissenschaft bezeichnet eine Methodenlehre, die sich mit der Erhebung, der Darstellung, der Analyse und der Bewertung von Daten auseinander setzt. Ein zentraler Aspekt ist dabei die Modellbildung mit zufälligen Komponenten.

Teilgebiete:

- Deskriptive Statistik: beschreibend
- Explorative Datenanalyse: Suche nach Strukturen
- Induktive Statistik: Schlüsse von Daten auf Grundgesamtheit oder allgemeine Phänomene

Zitate:

• Statistics is the grammar of science.

Karl Pearson

• Statistics: the mathematical theory of ignorance.

Morris Kline

 Math is a language that you use to describe statistics, but really it's about collecting information and putting it in an order that makes sense.

Lauren Stamile

- Statistics is the science of learning from experience.
 Bradley Efron
- ⇒ Statistische Methodik als unersetzliches Werkzeug empirischer Wissenschaft.

29

Zitate:

- All models are wrong, but some are useful.
 George E. P. Box
- Statistics are like bikinis. What they reveal is suggestive, but what they conceal is vital.

Aaron Levenstein

 The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data.

John Tukey

- If you torture the data enough, nature will always confess.
 Ronald Coase
- There are no routine statistical questions, only questionable statistical routines.

David R. Cox

■ ⇒ Statistik ist komplex und ihre Ergebnisse werden oft missbraucht oder missinterpretiert.

Zitate:

 Statistics is a body of methods for making wise decisions in the face of uncertainty.

W. Allen Wallis

- Cognitive psychology tells us that the unaided human mind is vulnerable to many fallacies and illusions because of its reliance on its memory for vivid anecdotes rather than systematic statistics.
 Steven Pinker
- It is the mark of a truly intelligent person to be moved by statistics.
 George Bernard Shaw
- Statistik ist für mich das Informationsmittel der Mündigen. Wer mit ihr umgehen kann, ist weniger leicht zu manipulieren. Der Satz "Mit Statistik kann man alles beweisen" gilt nur für die Bequemen, die keine Lust haben, genau hinzusehen.

Elisabeth Noelle-Neumann

 Statistisches Denken als Mittel um Irrationalität zu verringern und mit Unsicherheit umzugehen.

30

Zitate:

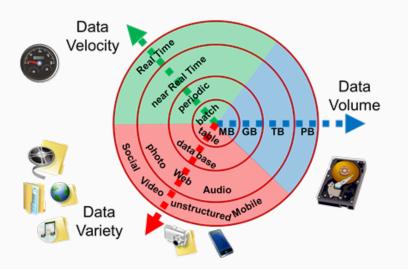
- Our scientific age demands that we provide definitions, measurements, and statistics in order to be taken seriously. Yet most of the important things in life cannot be precisely defined or measured. Can we define or measure love, beauty, friendship, or decency, for example? Dennis Prager
- Statistics are the triumph of the quantitative method, and the quantitative method is the victory of sterility and death.
 Hilaire Belloc

Zitate:

• The best thing about being a statistician is that you get to play in everyone's backyard.

John Tukey

I keep saying that the sexy job in the next 10 years will be statisticians. And I'm not kidding.


Hal Varian

"Big Data"

- Analyse und Verarbeitung großer Datenmengen
- Drei Vs:
 - Volume
 - Velocity
 - Variety
- Algorithmische Herangehensweise oft ohne Modelle
- Große Herausforderung für die Statistik

33

"Big Data"

Frühe amtliche Statistik

2300 v. Chr. Volkszählung in China

1375 v. Chr. Volkszählung in Israel

600000 waffenfähige Männer

(4. Buch Mose)

seit ca. 550 v. Chr. Volkszählungen im römischen Reich

Politische Arithmetik

John Graunt (1620 - 1674):

Sterbetafeln der Stadt London nach Ausbruch der Pest (Demographie)

Sir William Petty (1623 - 1687):

"Politische Arithmetik"

Daten für die Verwaltungsreform in Irland

Universitätsstatistik

• Gottfried Achenwall (1719 - 1722):

Begriff "'Statistik"' (= den Staat betreffend)

"Fach, das sich mit allerlei Staatsmerkwürdigkeiten beschäftigt."

37

Grundlagen

Sir Thomas Bayes (1702 - 1761): Wichtige theoretische Grundlagen

Pierre-Simon Laplace (1749 - 1822): Wahrscheinlichkeitsrechnung

Epidemiologie

John Snow (1813-1858)

Cholera in London 1854

Englische Schule der Inferenzstatistik

Francis Galton (1822 - 1911):

Grundlagen der Regression

Karl Pearson (1857 - 1936):

Theorie der statistischen Tests (gemeinsam mit J.Neyman)

R.A. Fisher (1890 - 1962):

Grundkonzepte der statistischen Inferenz Maximum-Likelihood-Prinzip

Statistische Tests

LMU

- 1911: Seminar für Statistik und Versicherungswissenschaft Leitung: Privatdozent Böhm
- 1978: Studiengang Statistik (Diplom)
- 1995 2006: Sonderforschungsbereich 386
 "Statistische Analyse diskreter Strukturen Modellierung und Anwendung in Biometrie und Ökonometrie"

42

Neuere Entwicklungen

Emil Julius Gumbel Extremwertstatistik

Cox (1972) Lebensdauermodelle

Efron (1979) Computerintensive Verfahren

Mc Cullagh, Nelder (1983) Verallgemeinerte lineare Modelle

L. Tierney (1994) Bayesianische Analyse

Hastie, Tibshirani (2001) Statistical Learning

Emil Julius Gumbel (München 1891- New York 1966)

Wichtige Beiträge zur Extremwertstatistik (1958)

Nelder & Wedderburn 1972

Besag 1974

Generalized Linear Models

Insgesamt 5299 mal zitiert (Stand Sep '16)

Spatial interaction and the statistical analysis of lattice systems

- Insgesamt 5693 mal zitiert (Stand Sep '16)
- Grundidee der räumlichen Statistik

45

Efron & Tibshirani 1993

Hastie & Tibshirani 1990

Buch: Generalized Additive Models

- Insgesamt 12242 mal zitiert (Stand Sep '16)
- Grundidee der flexiblen nichtlinearen Regression

Buch : An Introduction to the Bootstrap

- Insgesamt 32202 mal zitiert (Stand Sep '16)
- Bootstrap: Quantifikation von Unsicherheit ohne viele Annahmen

Gilks, Richardson & Spiegelhalter 1996

Buch: Markov Chain Monte Carlo in Practice

Popularisierung der Bayesianischen Statistik

49

Datenerhebung und Messung

Hastie, Tibshirani & Friedmann 2001

Buch: The Elements of Statistical Learning

 Machine Learning, Data Mining, Künstliche Intelligenz, etc. aus Sicht der Statistik

5

Grundbegriffe

- Statistische Einheit, Untersuchungseinheit
- Grundgesamtheit/ Population
- Teilgesamtheit/ Stichprobe
- Merkmal
- Merkmalsausprägung

Messen

"Measurement is the contact of reason with nature."

Henry Margenau (1959)

"In its broadest sense, measurement is the assignment of numerals to objects or events according to rules."

Stanley S. Stevens (1951)

53

Definition

 $\mathsf{Marco} \longrightarrow 1.84$

 $\mathsf{Annna} \longrightarrow 1.61$

Laura $\longrightarrow 1.72$

Merkmal definiert Relation (Struktur) zwischen den Objekten.

Messung: strukturerhaltende Abbildung (Homomorphismus)

Bsp: Anna ist kleiner als Laura $\Leftrightarrow 1.61 < 1.72$

Messen

Messen bedeutet die Zuordnung von Zahlen zu Ausprägungen von Merkmalen an Objekten.

- Physikalische Messungen: Gewicht, Blutdruck, Fettaufnahme, . . .
- Psychometrische Beispiele: Intelligenz, Gewaltbereitschaft, . . .
- $\blacksquare \ \ Wirtschaftswissenschaftliche \ Beispiele: \ Inflation, \ Bruttosozial produkt,$

. . .

54

Typen von Messungen

- Messung hat reales (physikalisches) Relativ; direkte Messung: ("representational measurement") z.B. Länge, Gewicht, Anzahl, Blutzucker, etc.
- 2. Messung besitzt durch *Operationalisierung* definiertes Relativ; indirekte/operationale Messung ("pragmatic measurement"), z.B. Intelligenz, Schwere einer Krankheit

Skalen

Homomorphe Abbildung

empirisches Relativ \Rightarrow numerisches Relativ

Existenz:

Ist die Struktur der Objekte so, dass eine strukturerhaltende Abbildung existiert?

 \Rightarrow Axiome von Repräsentationstheoremen müssen erfüllt sein (z.B. Transitivität o.ä.)

Eindeutigkeit:

Gibt es mehrere zulässige Skalen?

(z.B. Länge in cm, m; Temperatur in C, F oder K)

 \Rightarrow Zulässige (strukturerhaltende) Transformationen

57

Nominalskala

Beispiele: Diagnosen, Geschlecht

Struktur: keine

• Mögliche Aussagen: gleich, ungleich

• Erlaubte Transformationen: alle eineindeutigen Transformationen

$$a = b \Leftrightarrow f(a) = f(b)$$

Skalentypen (Messniveaus)

Die Skalentypen sind durch die Struktur des empirischen Relativs gegeben. Charakterisierung durch zulässige Transformationen.

- \rightarrow Existenz ist nicht immer gegeben
- \rightarrow Eindimensionalität könnte verletzt sein

58

Ordinal- oder Rangskala

- Beispiele: Schulbildung, soziale Schicht, Schweregrad einer Erkrankung
- Struktur: lineare Ordnung
- Mögliche Aussagen: gleich, ungleich, größer, kleiner
- Erlaubte Transformationen: alle positiv monotonen Transformationen

$$a < b \Rightarrow f(a) < f(b)$$

Intervallskala

Beispiele: Ergebnisse psychometrischer Tests, Scores, Schulnoten(?),
 Häufigkeit der Kommunikation, physiologische Daten (EKG)

• Struktur: Abstände definiert mit Axiomen

• Mögliche Aussagen: gleich, ungleich, größer, kleiner, Differenzen

• Erlaubte Transformationen: alle linearen Transformationen y = ax + b

$$f(x_1) - f(x_2) = f(x_3) - f(x_4) \Leftrightarrow x_1 - x_2 = x_3 - x_4$$

61

Absolutskala

Beispiel: Häufigkeit

• Struktur: Einheit liegt auf natürliche Weise fest

■ Erlaubte Transformationen: keine

Verhältnisskala

Intervallskala mit (natürlichem) Nullpunkt

Beispiele: Fernsehdauer, Preis, Länge, Gewicht

Struktur: Abstände definiert, Nullpunkt

 Mögliche Aussagen: gleich, ungleich, größer, kleiner, Differenzen, Verhältnis

• Erlaubte Transformationen: y = ax (Multiplikation)

$$\frac{f(x_1)}{f(x_2)} = \frac{x_1}{x_2}$$

62

Skalenniveau

Beachte:

- Je höher das Skalenniveau, desto mehr Interpretationen sind möglich
- Sinnvoll interpretierbare Berechnungen sollen invariant bezüglich der zulässigen Transformationen sein

Sinnvoll interpreterbare Berechnungen:

	sinnvoll interpretierbare Berechnungen					
Skalenart	auszählen	ordnen	Differenzen bilden	Quotienten bilden		
Nominal	✓	X	X	X		
Ordinal	✓	\checkmark	X	X		
Intervall	✓	\checkmark	\checkmark	X		
Verhältnis	✓	\checkmark	\checkmark	\checkmark		

Skalentransformationen

Beispiel: Konzentration von Bakterien

$$\begin{array}{ll} 3 \cdot 10^{-3} & \log(3 \cdot 10^{-3}) \approx -2.5 \\ 2 \cdot 10^{-4} & \text{oder} & \log(2 \cdot 10^{-4}) \approx -3.6 \\ 2.2 \cdot 10^{-5} & \log(2.2 \cdot 10^{-5}) \approx -10.7 \end{array}$$

Skalenwahl ⇔ Interpretation der Differenz

Bei log-Skala: Differenz = log(Faktor der Veränderung)

Verwende log zur Basis 10

65

Validität

Frage: Wird das gemessen, was gemessen werden soll?

In der emp. Sozialforschung:

- Inhaltsvalidität
- Kriteriumsvalidität
- Konstruktvalidität

Statistik: systematischer Messfehler? U im Mittel = 0

Gütekriterien: Genauigkeit

Messfehlermodelle: Es gibt einen wahren Wert X und eine Messung X^* z.B.

$$X^* = X + \underbrace{U}_{Messfehle}$$

U im Mittel = 0 (unsystematischer Fehler, unverzerrte Vermessung)

⇒ klassischer additiver Messfehler

Modell der klassischen (psychologischen) Testtheorie

Aspekte:

- Validität = Gültigkeit
- Reliabilität = Zuverlässigkeit

66

Reliabilität

Ist die Messung zuverlässig?

Erhält man bei Wiederholung den gleichen Wert?

Erhält man unter verschiedenen Bedingungen den gleichen Wert? \rightarrow Interrater-Reliabilität

Abhängig von:

Verhältnis von Streuung des Messfehlers zur Gesamtstreuung

$$r = \frac{\sigma_X^2}{\sigma_{X^*}^2} = \frac{\sigma_X^2}{\sigma_X^2 + \sigma_U^2}$$

 $\sigma_X^2, \sigma_{X^*}^2$ Varianz von X bzw. X^*

→ Interne Konsistenz: Cronbachs Alpha (später)

Indexbildung

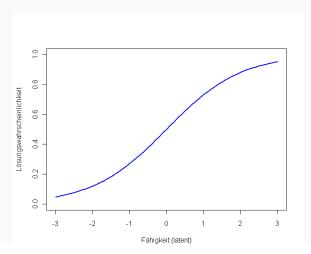
Zusammenfassung von Einzelindikatoren zu einer neuen Variablen Häufig: Bildung von (gewichteten) Summen von einzelnen Variablen Beispiel:

Pflege-Qualität =
$$a_1 \cdot Q(Essen) + a_2 \cdot Q(Medizinische Versorgung) + ...$$

Indexbildung folgt nur theoretischen Vorgaben und fachspezifischen Überlegungen

Fragen der Statistik:

- Gleichheit sinnvoll? (Dimensionsreduktion zulässig)
- Ordnung bzw. Abstände sinnvoll?


69

71

Itemcharakteristik

Grundidee: Wahrscheinlichkeit von Lösung der Aufgabe bzw. Antwort "Ja" hängt von der latenten Variable ab.

$$P(\text{Item gel\"ost}) = G(\text{Iatente Gr\"oße})$$

Skalierungsverfahren mit latenten Variablen

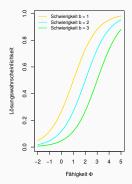
Grundlage: Modell mit latenter Größe, die das Antwortverhalten oder Lösen von Aufgaben bestimmt

Wichtigste Beispiele:

- Likert Skalen
- Faktorenmodell
- Rasch Modell

Ausblick: Statistische Verfahren zur Überprüfung der Messung (Skalierung)

- Itemanalyse
- Rasch-Modell
- Faktorenanlyse
- Analyse von Wiederholungs- und Mehrfachmessungen
- Messfähigkeitsanalyse in der Qualitätskontrolle


Weiter: Verfahren zur Berücksichtung von Messfehlern

Rasch-Modell

Items haben verschiedene Schwierigkeiten

Lösungswahrscheinlichkeiten lassen sich durch Personenfähigkeit und Itemschwierigkeit beschreiben:

 $P(\text{Item gel\"ost}) = G(\Phi_i - b_i)$ Φ_i : Fähigkeit von Person ib_i: Schwierigkeit von Item j

Lit.: Carolin Strobl (2010): Das Rasch-Modell, Rainer-Hampp-Verlag.

73

Weitere Klassen

 Quasi-stetiges Merkmal: diskret, sehr kleine Einheiten, "praktisch" stetig.

Beispiel: Monetäre Größen in Cent,

• **Gruppierte** Daten, **Häufigkeits**daten: Wertebereich eines (quasi-)stetigen Merkmals wird in Gruppen (Klassen, Kategorien) eingeteilt.

Beispiele: Gehalt in Gehaltsklassen, Alter in Altersklassen Bemerkung: Gruppierung dient auch dem Datenschutz!

Merkmalstypen: Stetige und diskrete Merkmale

 Diskretes Merkmal: endlich oder abzählbar unendlich viele verschiedene Werte

Beispiele: Geschlecht, Kinderanzahl,...

• Stetiges Merkmal: alle Werte in einem Intervall können angenommen werden

Beispiele: Zeitdauern, Größe, Gewicht, ...

74

Datengewinnung und Erhebungsarten

- Vollerhebung: Alle statistischen Einheiten der Grundgesamtheit werden untersucht ("erhoben").
- Stichprobe = Teilerhebung
- **Zufallsstichprobe:** statistische Einheiten der Stichprobe werden zufällig nach einem bestimmten Mechanismus gezogen. Mehr dazu in Statistik II (Induktive Statistik) und in der Vorlesung Stichprobenverfahren
- Bewusste Auswahlverfahren "Expertenauswahl" (zB. Fokusgruppen)
- Quotenauswahl

Induktive Statistik in der Regel nur mit zufälliger Stichprobe möglich!

Erhebungsarten

- Querschnittsdaten: Ein oder mehrere verschiedene Merkmale werden an einer Reihe von Objekten einmal erhoben (zu einem bestimmten Zeitpunkt oder in einem bestimmten Zeitraum)
- Zeitreihe: z.B. Aktienkurse, Wirtschaftsentwicklung
- Longitudinal-, Längsschnitt- oder Paneldaten: Merkmale werden mehrmals zu verschiedenen Zeitpunkten an einer Reihe von Objekten erhoben, z.B. Sozioökonomisches Panel (SOEP)

77

Experimente

Es werden in der Regel verschiedene "Behandlungen" verglichen

Gemeinsamkeit: Experimenteller Eingriff ins Geschehen

- Randomisierte klinische Studie: Zuordnung von Behandelten zu Behandlungen erfolgt durch Losverfahren (Randomisierung)
- Randomisierte Experimente (Produktion, Landwirtschaft) (Vorlesung Versuchplanung)
- Experimente in Medizin und Biologie
- Naturwissenschaftliche Experimente mit zufälligen Komponenten

Epidemiologische Studien

 Kohortenstudien: Längsschnittstudien (Retrospektiv oder prospektiv)

Beispiel: EPIC Studie (European Prospective Investigation into Cancer) 400000 Personen in neun europäischen Ländern

- Fall-Kontroll-Studien: Erhebung von erkrankten (Fälle) und Kontrollen Beispiel: Deutsche Radon Studie
- Querschnittsstudien: Beispiel: 1997 1999 Erstes gesamtdeutsches Gesundheitssurvey (7124 Personen)