Zusammenhänge zwischen metrischen Merkmalen

Darstellung des Zusammenhangs, Korrelation und Regression

Daten liegen zu zwei metrischen Merkmalen vor:

Datenpaare (x_i, y_i) , i = 1, ..., n

Beispiel:

x: Anzahl der fest angestellten Mitarbeiter

y: Anzahl der freien Mitarbeiter

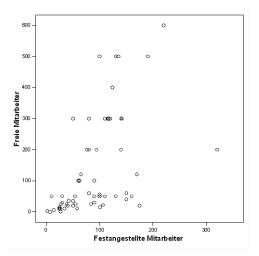
Frage:

Gibt es einen Zusammenhang zwischen diesen Merkmalen?

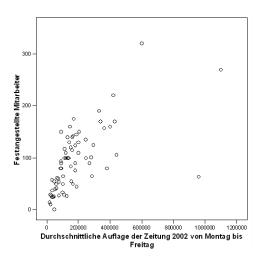
Wie lässt sich dieser Zusammenhang beschreiben?

Einfachste graphische Darstellung: Streudiagramm. Die Datenpaare entsprechen Punkten in der Ebene ("Punktwolke")

Beispiel 1: Streudiagramm (mit SPSS)



Beispiel 2

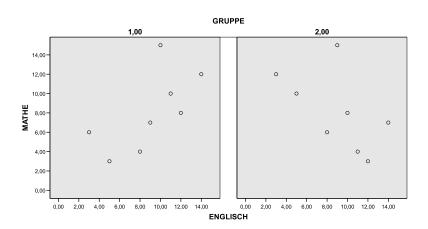


Beispiel 3

Punkte in Englisch und Mathematik

	Gruppe 1		Gruppe 2	
Schüler	Englisch	Mathe	Englisch	Mathe
1	14	12	10	8
2	9	7	8	6
3	5	3	3	12
4	3	6	5	10
5	11	10	14	7
6	8	4	9	15
7	10	15	11	4
8	12	8	12	3
Mittelwert	9.0	8.1	9.0	8.1
Standardabweichung	3.6	4.1	3.6	4.1

Beispiel 3 (Streudiagramme)



Kovarianz

Maß für den Zusammenhang der beiden Merkmale:

Daten: $(x_i, y_i), i = 1, ..., n$

$$S_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Beachte:

- Summand i positiv, falls x_i und y_i relativ zum Mittelwert das gleiche Vorzeichen haben.
- Für s_{xx} ergibt sich die Varianz von X.
- Die Kovarianz hängt sowohl von der Streuung als auch von dem Zusammenhang der beiden Merkmale ab.

Bravais-Pearson-Korrelationskoeffizient

Der Bravais-Pearson-Korrelationskoeffizient ergibt sich aus den Daten (x_i, y_i) , i = 1, ..., n durch

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2)}} = \frac{S_{xy}}{S_x S_y}$$

Wertebereich: $-1 \le r \le 1$

- r > 0 positive Korrelation, gleichsinniger linearer Zusammenhang, Tendenz: Werte (x_i, y_i) um eine Gerade positiver Steigung liegend
- r < 0 negative Korrelation, gleichsinniger linearer Zusammenhang, Tendenz: Werte (x_i, y_i) um eine Gerade negativer Steigung liegend
- r = 0 keine Korrelation, unkorreliert, kein linearer Zusammenhang

Punkte in Englisch und Mathematik

Gruppe 1:

$$r_{xy} = \frac{S_{xy}}{S_x S_y} = \frac{9.57}{3.641} = 0.65$$

Gruppe 2:

$$r_{xy} = \frac{S_{xy}}{S_x S_y} = \frac{-8.29}{3.6 \cdot 4.1} = -0.56$$

Gruppe 1: positiver linearer Zusammenhang

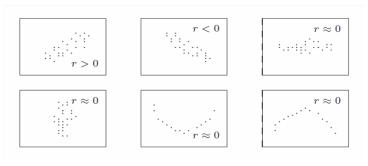
Gruppe 2: negativer linearer Zusammenhang

Eigenschaften des Korrelationskoeffizienten

- Maß für den linearen Zusammenhang
- Ändert sich nicht bei linearen Transformationen
- Symmetrisch (Korrelation zwischen x und y = Korrelation zwischen y und x)
- Positive Korrelation bedeutet: Je größer x, desto größer im Durchschnitt y
- Korrelation = +1 oder -1, falls die Punkte genau auf einer Geraden liegen
- Korrelation = 0 bedeutet keinen linearen Zusammenhang, aber nicht Unabhängigkeit
- Korrelation empfindlich gegenüber Ausreißern

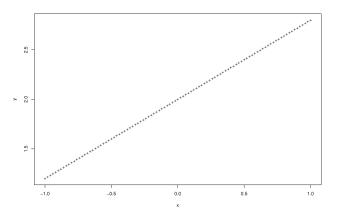
Eigenschaften von r

• r misst Stärke des *linearen* Zusammenhangs.

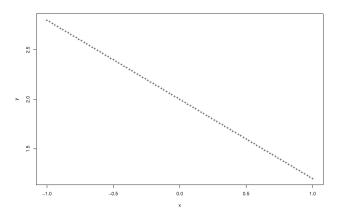


Punktkonfigurationen und Korrelationskoeffizienten (qualitativ)

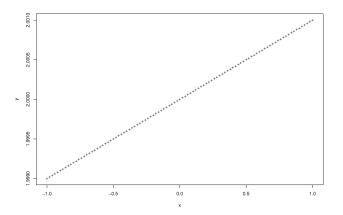
Beispiel 1: Lineare (unverrauschte) Funktion, y = 0.8x + 2.0, 101 equidistante Stützstellen im Intervall [-1,1], r =



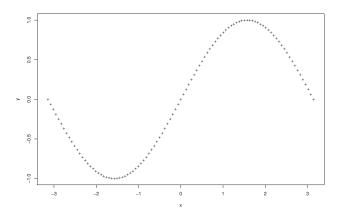
Beispiel 2: Lineare (unverrauschte) Funktion, y = -0.8x + 2.0, 101 equidistante Stützstellen im Intervall [-1,1], r =



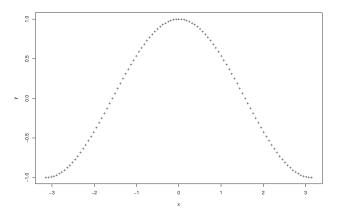
Beispiel 3: Lineare (unverrauschte) Funktion, y = 0.001x + 2.0, 101 equidistante Stützstellen im Intervall [-1,1], r =



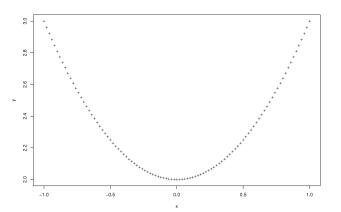
Beispiel 4: Periodische (unverrauschte) Funktion, $y = \sin(x)$, 101 equidistante Stützstellen im Intervall $[-\pi, \pi]$, r =



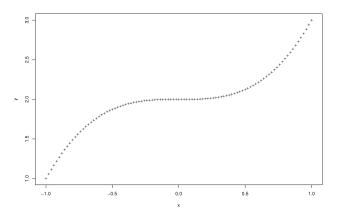
Beispiel 5: Periodische (unverrauschte) Funktion, $y = \cos(x)$, 101 equidistante Stützstellen im Intervall $[-\pi, \pi]$, r =



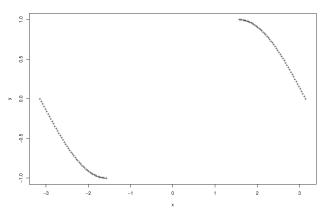
Beispiel 6: Quadratische (unverrauschte) Funktion, $y = x^2 + 2.0$, 101 equidistante Stützstellen im Intervall [-1, 1], r =



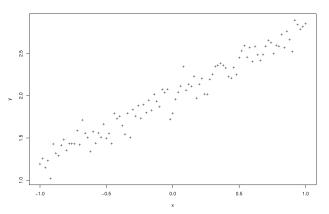
Beispiel 7: Kubische (unverrauschte) Funktion, $y = x^3 + 2.0$, 101 equidistante Stützstellen im Intervall [-1,1], r =



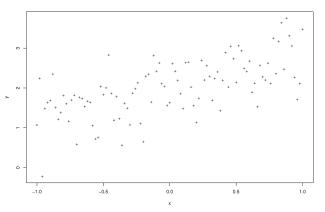
Beispiel 8: Abschnittweise definierte (unverrauschte) Funktion $y = \sin(x)$, 50 und 51 equidistante Stützstellen in den Intervallen $[-\pi, -\frac{\pi}{2}]$ und $[\frac{\pi}{2}, \pi]$, r =



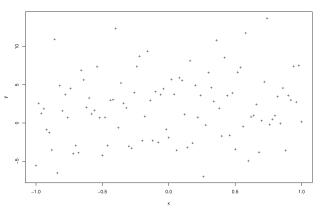
Beispiel 9: Lineare, schwach verrauschte Funktion, y = 0.8x + 2.0 + N(0, 0.1), 101 equidistante Stützstellen im Intervall [-1,1], r =



Beispiel 10: Lineare, stärker verrauschte Funktion, y = 0.8x + 2.0 + N(0, 0.5), 101 equidistante Stützstellen im Intervall [-1,1], r =



Beispiel 11: Lineare, stark verrauschte Funktion, y=0.8x+2.0+N(0,5), 101 equidistante Stützstellen im Intervall [-1,1], r=



Beispiel 12: Lineare, stärker verrauschte Funktion, y = 0.1x + 2.0 + N(0, 0.5), 101 equidistante Stützstellen im Intervall [-1,1], r =



Lineare Transformationen

Bei exakten lineare Zusammenhängen gilt:

$$r = +1$$
 bzw. $-1 \Leftrightarrow Y = aX + b$ mit $b > 0$ bzw. $b < 0$

Lineare Transformationen

$$\tilde{X} = a_X X + b_X$$
, $\tilde{Y} = a_Y Y + b_Y$, a_X , $a_Y \neq 0$
r Korrelationskoeffizient zwischen X und Y
 \tilde{r} Korrelationskoeffizient zwischen \tilde{X} und \tilde{Y}

$$\Rightarrow \begin{array}{ll} \tilde{r} = r & \Leftrightarrow & a_X, a_Y > 0 \text{ oder } a_X, a_Y < 0 \\ \tilde{r} = -r & \Leftrightarrow & a_X > 0, a_Y < 0 \text{ oder } a_X < 0, a_Y > 0. \end{array}$$

Vektor-Darstellung

Definiere die zentrierten Datenvektoren

$$x_Z = (x_1 - \bar{x}, \dots, x_i - \bar{x}, \dots, x_n - \bar{x})'$$

 $y_Z = (y_1 - \bar{y}, \dots, y_i - \bar{y}, \dots, y_n - \bar{y})'$

$$\Rightarrow r = \frac{x_Z'y_Z}{||x_Z|| \, ||\bar{y}_Z||}, \, \mathsf{mit} \, \, || \, . \, || \, \mathsf{euklidische} \, \, \mathsf{Norm}.$$

Aus der Schwarz-Cauchy-Ungleichung folgt

$$|x_Z'y_Z| \le ||x_Z|| \, ||y_Z||,$$

d.h.
$$-1 \le r \le +1$$
.

Spearmans Korrelationskoeffizient = Rang-Korrelationskoeffizient

X, Y (mindestens) ordinal

Idee: Gehe von Werten x_i , i = 1, ..., n und y_i , i = 1, ..., n über zu ihren Rängen.

$$x_{(1)} \leq \ldots x_{(i)} \ldots \leq x_{(n)}$$

$$rg(x_{(i)}) = i,$$

analog für $y_{(1)}, \ldots, y_{(n)}$.

Beispiel

$$x_i$$
 2.3 7.1 1.0 2.1 $rg(x_i)$ 3 4 1 2

bei Bindungen (ties):

$$x_i$$
 2.3 7.1 1.0 2.1 2.3 3.5 5 1 2 3.5

 \Rightarrow Durchschnittsrang $\frac{3+4}{2} = 3.5$ vergeben.

Also: Urliste der Größe nach durchsortieren

 \Rightarrow Ranglisten $rg(x_i), rg(y_i), i = 1, ..., n$ vergeben (bei ties:

Durchschnittsränge)

Idee: Berechne den Korrelationskoeffizienten nach Bravais-Pearson für die Ränge statt für die Urliste.

Definition: Spearmans Korrelationskoeffizient

Der Korrelationskoeffizient nach Spearman ist definiert durch

$$r_{SP} = \frac{\sum (rg(x_i) - \bar{rg}_X)(rg(y_i) - \bar{rg}_Y)}{\sqrt{\sum (rg(x_i) - \bar{rg}_X)^2 \sum (rg(y_i) - \bar{rg}_Y)^2}}.$$

Wertebereich: $-1 \le r_{SP} \le 1$

Interpretation

 $r_{SP} > 0$ gleichsinniger monotoner Zusammenhang,

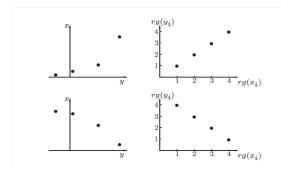
Tendenz: $x \text{ groß} \Leftrightarrow y \text{ groß}$, $x \text{ klein} \Leftrightarrow y \text{ klein}$

 $r_{SP} < 0$ gegensinniger monotoner Zusammenhang,

Tendenz: $x \text{ groß} \Leftrightarrow y \text{ klein}, x \text{ klein} \Leftrightarrow y \text{ groß}$

 $r_{SP} \approx 0$ kein monotoner Zusammenhang

Extremfälle



Extremfälle für Spearmans Korrelationskoeffizienten, $r_{SP}=1$ (oben) und $r_{SP}=-1$ (unten)

Spearmans Korrelationskoeffizient misst monotone (auch nichtlineare) Zusammenhänge!

Bemerkungen:

Rechentechnische Vereinfachungen:

$$r\bar{g}_X = \frac{1}{n} \sum_{i=1}^n rg(x_i) = \frac{1}{n} \sum_{i=1}^n i = (n+1)/2,$$

 $r\bar{g}_Y = \frac{1}{n} \sum_{i=1}^n rg(y_i) = \frac{1}{n} \sum_{i=1}^n i = (n+1)/2.$

Rechentechnisch günstige Version von r_{SP} :

Daten:
$$(x_i, y_i)$$
, $i = 1, ..., n$, $x_i \neq x_j$, $y_i \neq y_j$ für alle i, j
Rangdifferenzen: $d_i = rg(x_i) - rg(y_i)$

$$r_{SP} = 1 - \frac{6\sum d_i^2}{(n^2 - 1)n}$$

Voraussetzung: keine Bindungen

Monotone Transformationen

$$\tilde{X} = g(X)$$
 g streng monoton, $\tilde{Y} = h(Y)$ h streng monoton
$$\Rightarrow r_{SP}(\tilde{X}, \tilde{Y}) = r_{SP}(X, Y),$$
 wenn g und h monoton wachsend bzw. g und h monoton fallend sind,
$$r_{SP}(\tilde{X}, \tilde{Y}) = -r_{SP}(X, Y),$$
 wenn g monoton wachsend und h monoton fallend bzw. g monoton fallend und h monoton wachsend sind.

Kendall's Tau

Betrachte Paare von Beobachtungen (x_i, y_i) und (x_j, y_j)

Ein Paar heißt:

konkordant, falls
$$x_i < x_j$$
 und $y_i < y_j$ oder $x_i > x_j$ und $y_i > y_j$

diskordant, falls
$$x_i < x_j$$
 und $y_i > y_j$ oder $x_i > x_j$ und $y_i < y_j$

 N_C : Anzahl der konkordanten Paare N_D : Anzahl der diskordanten Paare

$$au_a = rac{N_C - N_D}{n(n-1)/2}$$
 Kendall's Tau

Andere Varianten

ullet Goodman & Kruskal γ -Koeffizient

$$\gamma = \frac{N_C - N_D}{N_C + N_D}$$

• Somers D wird typischerweise verwendet wenn Y binär ist T_x : Anzahl der Paare mit ungleichem y und gleichem x ("Ties" = Bindungen)

$$D_{xy} := \frac{N_C - N_D}{N_C + N_D + T_x} = \frac{N_C - N_D}{\text{Anzahl Paare mit ungleichem y}}$$

Kendall's τ , Spearman's r_{sp}

Beispiel:

					au	r _{sp}
rg X	1	2	3	4	0.33	0.6
rg Y	2	1	4	3		
rg X	1	2	3	4	0.33	0.4
rg Y	1	3	4	2		

 r_{sp} bestraft Abweichung stärker als au

Unterschiede Kendall's au, Spearman's ho

- ullet ho verwendet Abstände auf der Rang-Skala
- ullet au orientiert sich an Paarvergleichen
- ullet au hat theoretische Entsprechung
- ullet au in der Regel kleiner als ho

Dichotome und stetige Merkmale: Punktbiseriale Korrelation

Korrelations-Koeffizient zwischen dichotomen und metrischem Merkmal

 $X \in \{0,1\}$ Ymetrisch

$$r_{XY} = \frac{\bar{Y}_1 - \bar{Y}_0}{\widetilde{S}_Y} \cdot \sqrt{\frac{n_0 n_1}{N^2}}$$

 $ar{Y}_0$ Mittelwert bei X=0, $ar{Y}_1$ Mittelwert bei X=1

Entspricht normiertem Abstand der Gruppenmittelwerte.

Dichotome und stetige Merkmale

- Beispiel 1 Kredit Scoring: Die Kreditwürdigkeit wird mit einem Scorewert gemessen (Schufa score)
 Dieser Scorewert soll auf seine Prognosegüte geprüft werden Variable: Y=1 (Eintrag nach 1.5 Jahren (Default) Y=0 kein Eintrag
- Beispiel 2: Blutserum Konzentration und stress-induzierte Herzinfarkte
 - X: Marker für Herzinfarkt und
 - Y: Infarkt während der WM (Gruppen)

ROC-Kurve

Jetzt Y dichotome Zielgröße und X metrische Einflussgröße:

 $Y = 1 \longrightarrow Ausfall (krank)$

 $Y = 0 \longrightarrow \text{kein Ausfall (gesund)}$

In der medizinischen Literatur ist das Testergebnis m:

$$\hat{Y}_i = 1 \Leftrightarrow x_i \geq c$$

Sensitivität und Spezifität

Richtig Positiv = Sensitivität:

$$f(\hat{Y} = 1|Y = 1) = f(x \ge c|Y = 1) = S_1(c)$$

 $S_1(c)$ stellt die Survivorfunktion dar.

Richtig negativ = Spezifität:

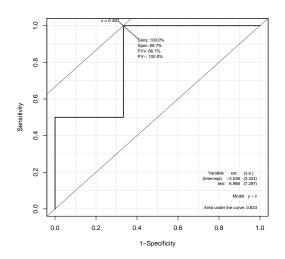
$$f(\hat{Y} = 0|Y = 0) = 1 - f(x \ge c|Y = 0) = 1 - S_0(c)$$

Falsch Positiv = 1- Spezifität:

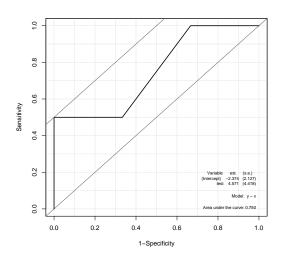
$$f(\hat{Y} = 1|Y = 0) = f(x \ge c|Y = 0) = S_0(c)$$

Die ROC-Kurve besteht aus den Punkten $(S_0(c), S_1(c))$

Beispiel für ROC-Kurve



Beispiel für ROC-Kurve mit Bindung



Maß zur Bewertung der Kurve: AUC

$$AUC = \int_{t=0}^{1} ROC(t)dt \tag{3.7}$$

Dies stellt die Fläche unter der Kurve dar.

Es gilt:

$$AUC = \frac{N_C + 0.5 * N_E}{N} \tag{3.8}$$

Dabei bezeichnet N_C die Anzahl der konkordanten Paare, N_E die Anzahl der identischen Paare, und N die Anzahl der Paare mit unterschiedlichem Y.

GINI- Koeffizient

Normierte Fläche zwischen Winkelhalbierender und ROC- Kurve

$$GINI = 2 \cdot (AUC - \frac{1}{2}) = 2 \cdot AUC - 1$$
 (3.9)

$$GINI = \frac{N_C - N_D}{N} \tag{3.10}$$

N_C: Anzahl der konkordanten Paare

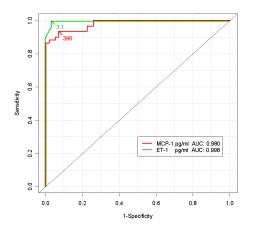
N_D: Anzahl der diskordanten Paare

N: Anzahl der Paare mit ungleichem Y

 $N = n_0 \cdot n_1$ mit n_i Anzahl der Daten mit Y=i.

Der GINI entspricht dem Somers D.

Beispiel: Stress induzierter Herzinfarkt



Korrelationsmatrix

Bei mehr als zwei Merkmalen werden die Korrelationen häufig in Form einer Matrix dargestellt.

Auf der Hauptdiagonalen stehen 1er.

Die Matrix ist symmetrisch.

$$\left(\begin{array}{ccc}
1 & r_{xy} & r_{xz} \\
r_{xy} & 1 & r_{yz} \\
r_{xz} & r_{yz} & 1
\end{array}\right)$$