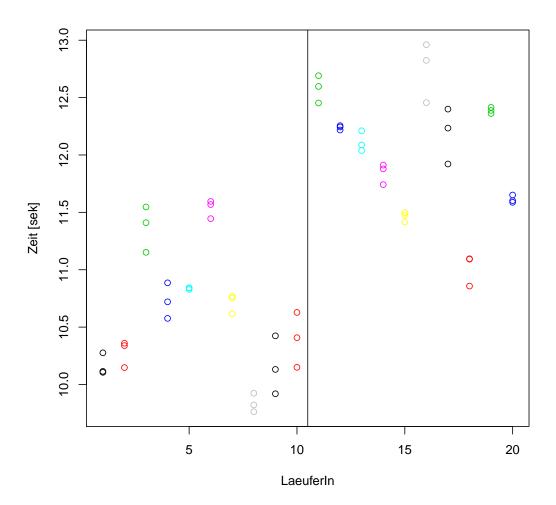
Beispiel 100-Meter-Lauf



- $\bullet \ y_{ij}$ die Zeit in Lauf jvon Läufer In i
- $i=1,\ldots,20$ LäuferInnen
- j = 1, 2, 3 Lauf
- $\bullet \ g_i \in \{1,2\}$ Geschlecht von Läufer In i

Mögliche Modelle mit bekannten Methoden:

• $y_{ij} = \beta_{g_i} + \varepsilon_{ij}$, $\varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$

Lineares Modell mit festen Effekten β_{g_i} . Dies ignoriert die Korrelation zwischen Messungen an der gleichen Person. Probleme:

- Verlust von Effizienz bei der Schätzung der β_{q_i} (größere wahre Standardfehler)
- Modellbasierte-Standardfehler sind nicht richtig bzw. müssen korrigiert werden (sogenannte Sandwich-Varianz).

Keine Modellierung der wiederholten Messungen pro LäuferIn.

• $y_{ij} = \beta_{g_i} + \beta_i + \varepsilon_{ij}, \qquad \varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$

Lineares Modell mit festen Effekten β_{q_i} und β_i . Probleme:

- Perfektes Confounding zwischen β_{g_i} und β_i , da LäuferInnen in Geschlechtsgruppen 'genestet' sind. Keine Schätzung der β_{g_i} möglich (nicht identifizierbar).
- Auch ohne Geschlechtseffekt: Wenige Messungen pro LäuferIn zur Schätzung der β_i . Was passiert bei unbalanciertem Design, nur 1-2 Werte für manche LäuferInnen?
- Auch ohne Geschlechtseffekt: Anzahl der festen Effekte β_i steigt mit der Anzahl der LäuferInnen. Feste Effekte für z.B. 1000 LäuferInnen?

Möchte man etwas über die Leistung einzelner LäuferInnen lernen oder über die Population von LäuferInnen und Unterschiede zwischen Männern und Frauen?

Modellierung der wiederholten Messungen pro LäuferIn über den Erwartungswert.

• $y_{ij} = \beta_{g_i} + \varepsilon_{ij}$, $\boldsymbol{\varepsilon}_i = (\varepsilon_{i1}, \varepsilon_{i2}, \varepsilon_{i3}) \sim N(\mathbf{0}, \boldsymbol{V}_i)$

Allgemeines lineares Modell mit festen Effekten β_{g_i} und Kovarianz der Fehler pro LäuferIn V_i . Valide Inferenz für die β_{g_i} bei richtiger Wahl von V_i .

- Frage: Wahl von V_i ? Auch bei unbalanziertem Design, also V_i ?
- Nachteil: Neben den Effekten auf Populationsebene (Geschlechtseffekt β_{g_i}) keine Schätzung von individuellen Effekten (Mittelwerten pro Person).

Modellierung der wiederholten Messungen pro LäuferIn über die Kovarianz.

Gemischtes Modell:

$$y_{ij} = \beta_{g_i} + b_i + \varepsilon_{ij}, \qquad b_i \stackrel{iid}{\sim} N(0, \tau^2), \qquad \varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2), \qquad b_i \perp \varepsilon_{ij}.$$

Bedingte Sicht:

- $E(y_{ij}|b_i) = E(\beta_{g_i}|b_i) + E(b_i|b_i) + E(\varepsilon_{ij}|b_i) = \beta_{g_i} + b_i + 0$, da b_i und ε_{ij} unabhängig.
- $\operatorname{Var}(y_{ij}|b_i) = \operatorname{Var}(\beta_{g_i} + b_i + \varepsilon_{ij}|b_i) = \operatorname{Var}(\varepsilon_{ij}) = \sigma^2$, da $\beta_{g_i} + b_i$ konstant gegeben b_i sowie b_i und ε_{ij} unabhängig.

Marginale Sicht:

- $E(y_{ij}) = \beta_{g_i} + E(b_i) + E(\varepsilon_{ij}) = \beta_{g_i} + 0 + 0.$
- $Cov(y_{ij}, y_{ik}) = Cov(\beta_{g_i} + b_i + \varepsilon_{ij}, \beta_{g_i} + b_i + \varepsilon_{ik}) = Cov(b_i, b_i) + Cov(\varepsilon_{ij}, \varepsilon_{ik}) = \tau^2 + \sigma^2 \delta_{jk}$ mit $\delta_{jk} = 1$ wenn j = k und $\delta_{jk} = 0$ sonst (Kronecker-Delta), da b_i und ε_{ij} unabhängig.