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Longitudinal and time-to-event data

Often, longitudinal and time-to-event data are collected together and the
longitudinal data is only available until the event occurs. Examples:

• Longitudinal auto-antibodies after seroconversion and time to onset of
type I diabetes

• CD4 cell counts after seroconversion and onset of HIV

• Longitudinal measurements of the prothrobin marker and time to death
in liver cirrhosis patients

We then observe longitudinal measurements yi1, . . . , yini and the event time
or censoring time Ti with tini ≤ Ti and event indicator δi (1 if subject i
experiences the event, 0 if it is censored).
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Challenges in modeling this type of data

The longitudinal marker yi(tij) for subject i = 1, · · · , n is

• measured at varying time points tij

• measured with error

• subject to informative dropout (no measurements after event onset)

Aim: Estimating the relationship between marker and time to event Ti
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Joint models

1. submodel for the true trajectories, e.g. a mixed model

yij = yi(tij) = mi(tij) + εi(tij)
= xi(tij)

>β + zi(tij)
>bi + εi(tij)

2. submodel for time-to-event, e.g. proportional hazards model

λi(u) = λ0 (u) exp {α ·mi (u)}

3. combined in a joint likelihood to avoid biases in two-step estimation
approach (first estimating 1., then plugging results into 2.)

f(Ti, yi(tij)) =

∫
f(Ti|bi)f(yi(tij)|bi)f(bi)dbi
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Estimation

• Inference is based on the EM-algorithm or on Bayesian approaches.

• Joint models are a broad class of different models, e.g. different specifi-
cations of the link between longitudinal and survival.

• Joint models are implemented in different R-packages, e.g. JM, JMbayes,
bamlss, and lcmm (latent class model).
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Further readings

• Article on the JM-package (Section 1 and 2 give a clear and short
overview)
Rizopoulos, D.(2010). JM: An R package for the joint modelling of
longitudinal and time-to-event data. Journal of Statistical Software,
35(9): 1-33.

• Standard review paper on the class of joint models
Tsiatis, A.A., and Davidian, M. (2004). Joint modeling of longitudinal
and time-to-event data: an overview. Statistica Sinica 14: 809-834.

• Overview of latent class approaches
Proust-Lima, C., Sene, M., Taylor, J.M., and Jacqmin-Gadda, H. (2014).
Joint latent class models for longitudinal and time-to-event data: A
review. Statistical Methods of Medical Research, 23: 74-90.

Analysis of Longitudinal Data, Summer Term 2017 6



Overview Chapter 12 - Selected topics

12.1 Joint models for longitudinal and event time data

12.2 Stochastic time-varying covariates

12.3 Sample size in longitudinal studies

Analysis of Longitudinal Data, Summer Term 2017 7



Stochastic time-varying covariates

Different types of covariates:

• Time-invariant covariates for each subject, e.g. gender, race, treatment
group

• Time-varying covariates:

– design-related, e.g.
∗ time since baseline and its transformations such as t2

∗ treatment in a “crossover” study
– stochastic time-varying covariates, e.g.
∗ dietary intake
∗ bloodmarker
∗ air pollution
∗ physical activity
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Stochastic time-varying covariates

• In our models, we assumed a relationship for the mean

g(E(Yij|Xi)) = xTijβ.

• This implicitly assumes that E(Yij|Xi) depends only on xij:

E(Yij|Xi) = E(Yij|xi1, . . . ,xini) = E(Yij|xij). (12.1)

This is true for time-invariant variables. For time-varying stochastic co-
variates, however, preceding or subsequent values of xij can ’confound’

the relationship between Yij and xij and β̂ can then be biased.
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External and Internal Covariates
A covariate is called exogenous or external when

f(xi,j+1|xi1, . . . ,xij, Yi1, . . . , Yij) = f(xi,j+1|xi1, . . . ,xij).

Otherwise, the covariate is called internal or endogenous.

Examples:

• air pollution measured at a central monitor is external, as it does not
depend on health outcomes

• personal air pollution exposure is internal if subjects with poor health
outcomes change their behavior to avoid high air pollution exposures.

For an external covariate (and automatically for design-related covariates),

E(Yij|Xi) = E(Yij|xi1, . . . ,xini) = E(Yij|xi1, . . . ,xij).
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External Covariates

For external covariates, we can focus on specifying a model for
f(Yij|xi1, . . . ,xij). Possible models include

• concurrent, model E(Yij|xij)
• lagged, model E(Yij|xi,j−k) for some k

• cumulative, model E(Yij|
j∑

k=1

xik)

• distributed lags, regression coefficients for xij, . . . ,xi,j−k follow some
pre-specified structure (e.g. polynomial).

Note that e.g. modeling E(Yij|xij) while Yij depends on both xij and
xi,j−1 can give misleading results.
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Internal Covariates

When variables are internal, we have to think both about meaningful
targets of inference and valid methods of inference. Methods include causal
inference, and modeling of the joint process {Yij,xij}.
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Sample size in longitudinal studies

As an example, assume that we have

• N/2 subjects per group

• ni = n measurements per subject (with equal time points tj, but not
necessarily equidistant)

• Two groups: placebo and therapy

• Model: LMM with linear group-specific trend, random intercept and slope
per subject

• Null hypothesis: δ = 0, where δ stands for the difference between the
linear trends in groups A and B.
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Sample size formula

For given type 1 error α and type 2 error β, the necessary sample size N to
detect a difference δ then is obtained using

N/2 =
(Z(1−α/2) + Z(1−β))

22σ̃2

δ2
,

where

σ̃2 = σ2


n∑
j=1

(tj − t)2

−1

+ d22

with t =
∑n
j=1 tj/n, error variance σ2 and random slope variance d22.

Thus, one needs to make assumptions about δ, σ2 and d22 to calculate N .

The tj are often chosen equidistantly with the study duration limited by
organizational reasons. Then, N needs to be greater the smaller n is.
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Comments and extensions

• The formula can be “reversed” to e.g. derive the power as a function
of N .

• The formula can easily be adapted for groups of different sizes.

• The formula can easily be adapted for comparing other coefficients.

• The extension to non-normal responses is also possible.

For further discussion, see e.g. Diggle et al (2002), Fitzmaurice et al (2004).
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