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Covariance matrix for β̂

Marginal model:

Yi ∼ Nni
(Xiβ,Vi(α)), or Y ∼ Nn(Xβ,V(α)). (5.1)

Remember that the ML estimator for β is given by

β̂ML(α) =

{
N∑
i=1

XT
i Vi(α)

−1Xi

}−1( N∑
i=1

XT
i Vi(α)

−1Yi

)
,

=
{
XTV(α)−1X

}−1
XTV(α)−1Y,

where α is replaced by its ML or REML estimate in practice.
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β̂ML(α) and β̂W

For a given α, β̂ML(α) is equal to the weighted least squares estimator

β̂ML(α) = β̂W =
{
XTWX

}−1
XTWY with W = V−1(α).

Generally, for any W, we have

E(β̂W) =
{
XTWX

}−1
XTW(Xβ) = β

Cov(β̂W) =
{
XTWX

}−1 {
XTW Cov(Y) WX

}{
XTWX

}−1

and β̂W is multivariate normal under the normality assumption (5.1). Thus,

β̂W is unbiased with any W as long as E(Y ) =Xβ is correctly specified.
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β̂ML(α) and β̂W

How does the choice of W affect the covariance of β̂W?

If Cov(Y) = V , we have that for β̂ML = β̂V−1

Cov(β̂ML) =
{
XTV−1X

}−1 {
XTV−1 Cov(Y) V−1X

}{
XTV−1X

}−1

=
(
XTV−1X

)−1
,

which can be shown to be smaller (in a matrix sense) than

Cov(β̂W) =
{
XTWX

}−1 {
XTW Cov(Y) WX

}{
XTWX

}−1

for any other W. Thus, with W = Cov(Y )−1 the estimator β̂W is most
efficient.
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Covariance matrix for β̂ML(α)

Cov(β̂ML(α)) =
{
XTV−1X

}−1 {
XTV−1 Cov(Y) V−1X

}{
XTV−1X

}−1

=
(
XTV−1X

)−1

• The equality between first and second lines assumes that Cov(Y) = V,
i.e. that V is correctly specified.

• In practice, V is unknown and we have to make assumptions.

• Also, α is replaced by its ML or REML estimate and the resulting
additional uncertainty is not accounted for in Cov(β̂ML(α)).
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Robust covariance for the fixed effects

What happens if our model for Cov(Y ) is wrong? For example, we might
assume compound symmetry with constant variance over time, but in fact
variances increase over time, or correlations decrease with time distance.

• If the covariance is incorrectly specified, Cov(Y) 6= V, the model-

based covariance
(
XTV−1X

)−1
can be very different from the true

covariance Cov(β̂ML(α)). Then, standard errors, confidence intervals

and tests for β based on
(
XTV−1X

)−1
will be incorrect.

• An analysis based on Cov(β̂ML) =
(
XTV−1X

)−1
is thus not robust

against misspecification of V.
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Robust covariance for the fixed effects

We can write

Cov(β̂ML(α)) =

{
N∑
i=1

XT
i V−1

i Xi

}−1{ N∑
i=1

XT
i V−1

i Cov(Yi) V−1
i Xi

}
×

{
N∑
i=1

XT
i V−1

i Xi

}−1

.(5.2)

The sandwich estimator, also called robust or empirical variance esti-
mator, replaces V i in (5.2) by V i(α̂) and Cov(Yi) by

rir
T
i = (yi −Xiβ̂)(yi −Xiβ̂)

T .
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Robust covariance for the fixed effects

The sandwich estimator is

• consistent for Cov(β̂ML) if N →∞, as long as E(Y ) =Xβ is correct.

• a better estimator the higher N is and should be avoided for small N .

• valid even when the covariance is misspecified, i.e. Cov(Y i) 6= V i.

• less efficient than the model-based covariance estimator
{
∑N

i=1 XT
i V−1

i Xi}−1 if the covariance is correctly specified

Correctly specifying the covariance structure is also important when we
want to interpret the covariance for our data.
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A small simulation study

Simulate R = 500 data sets from the model

Yij = βxij + bi + εij, i = 1, . . . , 100; j = 1, . . . , 10,

with bi i.i.d. N (0, 152) and εi i.i.d. N (0ni
,Σi), where a) Σi = σ2Ini

or
b) Σi equal to τ2 times an AR(1) correlation matrix (ρ = 0.7, τ2 = 152).

Obtain estimates β̂ for β = 1 and model-based estimates for the variance
of β̂ under the assumption of random intercept plus i.i.d. errors. We can

• approximate the true variance of β̂ by the variance of the R estimates

• look at the spread of the model-based variances in the R runs

• compare this to the spread of the robust variances in the R runs.
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A small simulation study - Results

●

●●

●

●

0.
21

0.
23

0.
25

0.
27

i.i.d. errors

●●

●

●●
●

●
●

●

●
●

●

●
●

●

0.
10

0.
15

0.
20

autocorrelated errors

model−based variances
robust variances
true variance

Analysis of Longitudinal Data, Summer Term 2017 10



Covariance matrix of (β̂, b̂)

It can be useful to construct confidence intervals (e.g. for the longitudinal
trajectory for subject i) or prediction intervals (e.g. for a new observation)
for expressions involving b. We then need the covariance matrix for(

β̂

b̂

)
= (CTR−1C + diag(0,G−1))−1CTR−1Y ,

with C = (X|Z), which can be seen to be (model-based)

Cov

(
β̂

b̂− b

)
= (CTR−1C + diag(0,G−1))−1.

Note that Cov(b̂ − b) is used, as Cov(b̂) does not recognize the random
variation in b.
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Hypothesis testing for β - The TLC trial

Consider again the model from 4.1 for lead blood levels in the TLC trial

Yij = β0+ β1I(tj = 1)+ β2I(tj = 4)+ β3I(tj = 6)

+ β4gi+ β5giI(tj = 1)+ β6giI(tj = 4)+ β7giI(tj = 6) + bi + εij

We might be interested in testing the following hypotheses:

• H0,1: β4 = 0

• H0,2: β5 = β6 = β7 = 0.

Interpretation?
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We can formulate these hypotheses as linear hypotheses on β,

H0 : Lβ = 0 versus H1 : Lβ 6= 0, (5.3)

where L is a matrix with p columns. For example, H0,1 corresponds to

L = (0, 0, 0, 0, 1, 0, 0, 0)

and H0,2 to

L =

 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 .

We can use an (approximate) Wald-Test, an (approximate) t− or F -Test
or a likelihood ratio test (LRT) to test for the fixed effects.
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Approximative Wald test

The Wald test uses that β̂ is approximately normally distributed:

(β̂ − β) a∼ N (0, (XTV (α̂)−1X)−1).

Test statistic:

T = (β̂)TLT

L

(
N∑
i=1

XT
i Vi(α̂)

−1Xi

)−1

LT

−1

L(β̂)

Null distribution: Under H0: Lβ = 0, T is approximatively χ2 distributed
with rank(L) degrees of freedom. (Note that the asymptotics here are
for N →∞.)
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Approximative t- or F-test

The Wald test statistic uses the estimated covariance which ignores
estimation uncertainty in α̂ and underestimates the variability in β̂.

This problem is often alleviated by using approximate t- or F -statistics:

• For a single βk, the distribution of (β̂k − βk)/ŜE(β̂k) is approximated
by a t-distribution.

• For general linear hypotheses (5.3), an F -approximation to the distribu-
tion of F = T/rank(L) is used, with rank(L) as numerator degrees of
freedom.
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The t degrees of freedom or the denominator degrees of freedom for the
F -distribution are estimated from the data.

• A Satterthwaite-type approximation is commonly used (it basically mat-
ches the moments of the distributions)

• The Kenward-Rogers method gives better results for small samples.

Estimating the degrees of freedom can be computationally expensive.

Note: The approximate Wald, t- and F -tests can also be ‘ro-
bustified’ by using the robust covariance matrix estimate instead of(∑N

i=1 XT
i Vi(α̂)

−1Xi

)−1

.

Analysis of Longitudinal Data, Summer Term 2017 17



Likelihood ratio test (LRT)

An alternative to the Wald test is the likehood ratio test (LRT). For small
samples, the LRT tends to be more reliable than the Wald test.

The LRT can be used for general nested hypotheses

H0 : β ∈ Θβ,0
versus H1 : β ∈ Θβ,

where Θβ,0
is a subspace of the parameter space Θβ for the fixed effects.

Test statistic:

λN = −2 ln

[
LML(θ̂ML,0)

LML(θ̂ML)

]
,

with θ̂ML,0 and θ̂ML the ML estimators over Θβ,0
and Θβ, respectively.
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Null distribution: Under H0, λN is asymptotically (N → ∞) chi-square
distributed with degrees of freedom (df) equal to the difference between the
dimensions of Θβ and Θβ,0

.

Important:

Remember that for REML estimation, the likelihood is based on the error
contrasts U = ATY and these depend on X, as A ⊥X.

⇒ Restricted likelihood values are not comparable between H0 and H1 when
the fixed effects differ (“comparing apples and oranges”).

⇒ Then, the likelihood ratio test cannot be used with REML estimation!!
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Example: TLC trial

Test for H0,1: β4 = 0. Extract from the output for summary(lmeREML):

Fixed effects: lead ~ group * week

Value Std.Error DF t-value p-value

(Intercept) 26.272 0.9370175 294 28.037898 0.0000

groupS 0.268 1.3251428 98 0.202242 0.8401

week1 -1.612 0.8428574 294 -1.912542 0.0568

week4 -2.202 0.8428574 294 -2.612542 0.0094

week6 -2.626 0.8428574 294 -3.115592 0.0020

groupS:week1 -11.406 1.1919804 294 -9.568950 0.0000

groupS:week4 -8.824 1.1919804 294 -7.402807 0.0000

groupS:week6 -3.152 1.1919804 294 -2.644339 0.0086

Interpretation? Which test does R use?
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Example: TLC trial

Likelihood ratio test for H0,2: β5 = β6 = β7 = 0:

ML REML
Under β ∈ R8 `ML = −1235.411 `REML = −1230.311
Under β5 = β6 = β7 = 0 `ML = −1284.682 `REML = −1282.019
λN 98.543 -
df 3 -
p-value < 0.0001 -

> lmeML <- lme(lead ~ group * week, random = ~ 1 | id,

data = lead, method = "ML")

> lmeML2 <- lme(lead ~ group + week, random = ~ 1 | id,

data = lead, method = "ML")

> anova(lmeML2, lmeML)
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Inference for the variance components

While inference for β is often of primary interest, inference for the
variance components is also of importance:

• For interpreting the random effects and covariance structure in the data.

• As a correctly specified covariance structure is necessary for valid inference
for the fixed effects (unless using robust inference).

• As many methods to analyze data with missings or drop-out need a
correctly specified covariance structure (see Chapter 11).
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Inference for the variance components - Example rats

Consider as an example the rat data and the model

Yij = β0 + b1i + (βgi + b2i)tj + εij

• Yij skull height for animal i at time tj

• tj time variable, t = log(1 + (age− 45)/10)

• gi treatment group of rat i, gi ∈ {1, 2, 3}

with assumptions

bi = (b1i, b2i) ∼ N (0,D), ind. of εi ∼ N (0, σ2Ini
).
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Denote

Cov(bi) = D =

(
d11 d12
d12 d22

)
.

Consider three possible models:

• M0: no random effects (bi ≡ 0), d11 = d12 = d22 = 0

• M1: only a random intercept (b2i ≡ 0), d12 = d22 = 0

• M2: (correlated) random intercept and slope.

We can compare M2 and M1 by testing for H0,1 : d12 = d22 = 0

and M1 and M0 by testing for H0,2 : d11 = 0.
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LRT for the variance components

• We can test these hypotheses using a likelihood ratio test.

• Different from testing for the fixed effects, the LRT can also be used with
REML estimation if the fixed effects do not differ between H0 and H1.

• The test statistic is again two times the difference in log-likelihoods
between alternative and null model.

• What is the null distribution? For variances, a common assumption is
violated: Under the null, the parameter does not lie in the interior but on
the boundary of the parameter space, as 0 is on the boundary of [0,∞).
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LRT for the variance components

What happens intuitively under H0,2 : d11 = 0 for large N?

• In (approximately) half of the cases, d11 is estimated to be positive.

• In (approximately) half of the cases, d11 would be estimated to be

negative, but d̂11 is instead set to 0 due the restriction d11 ≥ 0. (If the
numerical estimation routine properly incorporates these constraints.)

Thus, d̂11 is not approximately normal for large N , but follows a 0.5:0.5
mixture of a point mass at zero and a half-normal distribution.

Likewise, the LRT statistic is not asympotically χ2
1 distributed, but follows

a 0.5:0.5 mixture of a point mass at zero and a χ2
1 distribution under H0.
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LRT for the variance components

More generally, for

D =

 d11 . . . d1q
... . . . ...
d1q . . . dqq


and testing

H0 : d1q = · · · = dqq = 0 vs. H1 : dqq > 0,

the null distribution of the LRT is asymptotically (N → ∞) a 0.5:0.5
mixture between a χ2

q−1 and a χ2
q distribution. (χ2

0 denotes a point mass at
zero.) p-values are averages between those that would be obtained using a
χ2
q−1 and a χ2

q distribution, respectively.
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LRT for the variance components - Some notes

• Note that this mixture is not valid if a nuisance parameter is on the
boundary (e.g. if testing the random slope, the random intercept is ≈ 0).

• For q = 1 and Σi = σ2Ini
, an exact distribution is available (Crainiceanu

and Ruppert, 2004) and implemented in the R-package RLRsim.

• For testing a covariance parameter, the asymptotic null distribution is χ2
1.

• For more complex hypotheses for D, more complex chi-square mixtures
can arise (see Self & Liang, 1987; Stram & Lee, 1994, 1995).

• Score or Wald tests have the same asymptotic distribution as the LRT,
but are more difficult to compute here (Molenberghs & Verbeke, 2007).
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Example: The rat data, testing H0,1 : d12 = d22 = 0

> lme1 <- lme(RESPONSE ~ group * t - group,

random = ~ 1 | SUBJECT, data = rats)

> lme2 <- lme(RESPONSE ~ group * t - group,

random = ~ t | SUBJECT, data = rats)

> anova(lme1, lme2)

Model df logLik Test L.Ratio p-value

lme1 1 6 -466.2016

lme2 2 8 -466.2016 1 vs 2 1.857238e-07 1

> test.statistic <- 1.857238e-07

> p.value <- 0.5 * (1-pchisq(test.statistic,1)) +

0.5 * (1-pchisq(test.statistic,2))

> p.value #p-value from equal mixture chi_1^2:chi_2^2

[1] 0.999828

Interpretation?
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Example: The rat data, testing H0,2 : d11 = 0

> lme0 <- lm(RESPONSE ~ group * t - group, data = rats)

> library(RLRsim)

> exactRLRT(m = lme1, m0 = lme0, mA = lme1) # exact p-value

simulated finite sample distribution of RLRT.

(p-value based on 10000 simulated values)

data:

RLRT = 175.421, p-value < 2.2e-16

> test.statistic <- 175.421

> p.value <- 0.5 * (1-pchisq(test.statistic,df = 1))

> p.value #p-value from equal mixture chi_0^2:chi_1^2

[1] 0

Interpretation?
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