
7. Model building and model choice

Sonja Greven

Summer Term 2017

Analysis of Longitudinal Data, Summer Term 2017



General recommendations

• As E(bi) = 0, all covariates in Zi should be linear transformations of
covariates in Xi.

• If Zi contains xp, it should also contain x0, x1, . . . , x(p−1).

• The more complex the structure for the fixed and random effects is, the
simpler the covariance structure in Σi should be.

Analysis of Longitudinal Data, Summer Term 2017 1



Overview Chapter 7 - Model building and model choice

7.1 Model diagnostics

7.2 Model selection

7.3 Assumptions and confounding
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Residual diagnostics 1

Plotting the residuals rij = yij − xTijβ̂ against covariates can help in
diagnosing a misspecified mean structure, e.g. an omitted variable or a
missing quadratic term. There should be no systematic trend!

Example rat data, random intercept model with linear trend in transfor-
med time variable t = log(1 + (TIME − 50)/10):

> lme1 <- lme(RESPONSE ~ group * t - group,

random = ~ 1 | SUBJECT, data = rats)

> r <- resid(lme1, level = 0) # 0 - without random effects

> plot(rats$t, r, xlab = "t")

> lines(lowess(rats$t, r))

Analogously for the original untransformed time variable TIME.
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Residual diagnostics 1
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Residual diagnostics 2

When plotting the residuals against the estimated mean, there should
be no systematic trend.

CD4 example, random intercept, linear time trend with breakpoint in 0:

> cd4$Timesc <- cd4$Time * (cd4$Time > 0) # for breakpoint

> lme1 <- lme(CD4 ~ Time + Timesc, data = cd4, random = ~ 1|ID)

> yhat <- predict(lme1, level = 0) # 0 - predictions with-

> r <- resid(lme1, level = 0) # out random effects

> plot(yhat, r)

> lines(lowess(yhat, r, iter = 0))

> abline(h = 0)
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For comparison, random intercept model with smooth time trend:

> mygamm <- gamm(CD4 ~ s(Time), random = list(ID = ~ 1),

data = cd4, method = "REML")

> r <- resid(mygamm$lme, level = 1) # 1 - include random

# effects for smooth, not for subjects

> yhat <- predict(mygamm$lme, level = 1)

> plot(yhat, r)

> lines(lowess(yhat, r, iter = 0))

> abline(h = 0)
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Residual diagnostics 2
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Residual diagnostics 3

Plotting the residuals rij = yij − xTijβ̂ against covariates, e.g. time, can
also indicate a missing random slope.

Example sleepstudy data, models without and with random slope:

> lme1 <- lme(Reaction ~ Days, random = ~ 1 | Subject)

> r <- resid(lme1, level = 0) # 0: residuals w/o random effects

> xyplot(r ~ Days, groups = Subject, type = "l")

> lme2 <- lme(Reaction ~ Days, random = ~ Days | Subject)

> r <- resid(lme2, level = 1) # 1: residuals with random effects

# to see difference when including random slope

> xyplot(r ~ Days, groups = Subject, type = "l")

Analysis of Longitudinal Data, Summer Term 2017 8



Residual diagnostics 3
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Transformed residuals

Remember that
Cov(Y i −Xiβ) = V i.

Thus, the residual vector ri = yi −Xiβ̂ will have zero mean, but will be
correlated and heteroscedastic. We need to keep this in mind for diagnostics.

One could consider the subject-specific residuals yi − Xiβ̂ − Zib̂i.
However, b̂i very much depends on the normality assumption for bi, and is
also influenced by the assumed structure for V i.

Diagnostics are thus often based on transformed residuals r∗i = L−1i ri,

where V̂ i = LiL
T
i is the Cholesky decomposition with lower triangular

matrix Li. r
∗
i are approximately uncorrelated with unit variance.

Analysis of Longitudinal Data, Summer Term 2017 10



Transformed residuals

The transformed residuals r∗i have the following interpretation:

• The first element is the standardized residual for yi1.

• The jth element is an estimate of

Yij − E(Yij|Yi1, . . . , Yi(j−1))
Var(Yij|Yi1, . . . , Yi(j−1))

,

i.e. the standardized deviation from the conditional mean given all
previous observations.
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Transformed residuals

After the transformation, the residuals can be used for the same kind of
diagnostics as in the linear model, e.g.

• to identify outlying observations

• to identify skewness

• to plot the transformed residuals r∗ij against the transformed predicted
values µ̂∗ij with

µ̂∗i = L−1i µ̂i = L−1i Xiβ̂,

or against a selected transformed covariate (such as e.g. time).
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Outlier diagnostics

Define the squared Mahalanobis distance

di = r∗Ti r∗i .

as a summary measure of multivariate distance between observed and fitted
values for individual i. If the model is correctly specified, we have the
approximate distribution

di ∼ χ2
ni
, for i = 1, . . . , N.

This can be used to identify outlying individuals: p-values can be computed
for each subject and used to compare subjects, keeping in mind that p-values
smaller α are expected to occur αN times.
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Transformed residuals in R

> library(RLRsim) # useful to extract lme model components

> r.star <- function(m){ # takes an lme object

+ design <- extract.lmeDesign(m)

+ Z <- design$Z

+ D <- design$Vr * design$sigmasq

+ R <- design$sigmasq * diag(nrow(Z))

+ V <- Z %*% D %*% t(Z) + R

+ L <- t(chol(V))

+ r.star <- solve(L, resid(m, level = 0))

+ return(r.star) # returns the transformed residuals

+ }

Analysis of Longitudinal Data, Summer Term 2017 14



Example rat data

Random intercept model:

### Transformed residuals ###

> lme1 <- lme(RESPONSE ~ group * t - group,

random = ~ 1 | SUBJECT, data = rats)

> r.star1 <- r.star(lme1) # transformed model residuals

### QQ-Plot ###

> qqnorm(r.star1)

> qqline(r.star1)

### Outlier Diagnostics ###

> subjects <- unique(sort(rats$SUBJECT)) # for each subject

> di <- sapply(subjects, FUN = function(subj)

crossprod(r.star2[(rats$SUBJECT == subj)])) # compute d_i

> ni <- sapply(subjects, FUN = function(subj)

sum(rats$SUBJECT == subj)) # and n_i

Analysis of Longitudinal Data, Summer Term 2017 15



> pvalues <- pchisq(di, ni, lower = FALSE) # chi^2_{n_i} p-values

> plot(subjects, pvalues); abline(h = 0.05)
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Example rat data - Data
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Example rat data - Fit
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Example rat data - Residuals

Low dose

t

R
es
id
ua
ls

−2

−1

0

1

2

3

0.0 0.5 1.0 1.5 2.0

High dose

t

R
es
id
ua
ls

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0

Control

t
R
es
id
ua
ls

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0

Analysis of Longitudinal Data, Summer Term 2017 19



The choice of the covariance structure

A good model for the covariance structure is important for inference on
the fixed effects, interpretation and prediction.

An informal check is to plot the squared OLS residuals

rOLS,i = yi −Xiβ̂OLS

and the fitted variance function against t. The fitted variance function
corresponds to the diagonal entries of V̂ = ZD̂ZT + R̂.

Example rat data with random intercept and slope: The fitted variance
function is

(1 t ) D̂

(
1
t

)
+ σ̂2 = d̂11 + 2d̂12t+ d̂22t

2 + σ̂2.
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The semi-variogram revisited

A more comprehensive check for the covariance structure is the following.

As the transformed residuals are approximately uncorrelated with mean
zero and variance one, we have

1

2
E[(r∗ij − r∗ik)2] =

1

2

[
Var(r∗ij) + Var(r∗ik)− 2Cov(r∗ij, r

∗
ik)
]

=
1

2
· 1 +

1

2
· 1− 0 = 1.

Thus, if the model for the covariance structure is correct, the empirical semi-
variogram for the transformed residuals should randomly fluctuate around
the constant 1.
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Example rat data

Semi-variogram for the transformed residuals, random intercept model:
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The normality assumption for the random effects

It would be of interest to look at the distribution of the bi a) to check the

normality assumption and b) to find outlying individuals. However, the b̂i

• all have different distributions unless all Xi and Zi are equal.

• can look normal even if the true distribution of bi is not normal (e.g. bi-
modal). This is due to the shrinkage effect.

Fitting a model with a mixture distribution for the random effects (see
Section 6.3) allows to check for normality of the random effects.
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Overview Chapter 7 - Model building and model choice

7.1 Model diagnostics

7.2 Model choice

7.3 Assumptions and confounding
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Model choice

Often, there are several possible model specifications. To compare two
models M1 and M2, one can

• directly compare the likelihood if the numbers of parameters in M1 and
M2 are the same.

Examples:

– Gaussian vs. exponential serial correlation
– different transformations of a covariate in the fixed effects

• conduct a test if M1 and M2 are nested, see Chapter 5.

• use information criteria for model selection.

Analysis of Longitudinal Data, Summer Term 2017 26



Information criteria

• Goal: Comparison of models M1 and M2 with potentially different
numbers of parameters (potentially non-nested).

• Denote by l1 and l2 the maximized log-likelihood for models M1 and M2

and by df1 and df2 the number of parameters for models M1 and M2.

• Select model M2 if for a function F specific to the information criterion

−2l1 + F(df1) > −2l2 + F(df2).

• If M1 is nested in M2, a likelihood ratio test corresponds to

F(df2)−F(df1) = χ2
df2−df1;1−α,

where χ2
d;1−α is the (1− α)-Quantile of the χ2

d distribution.

Analysis of Longitudinal Data, Summer Term 2017 27



The Akaike information criterion (AIC) - Background

• The AIC uses F(df) = 2df , with df = dim(Θ) the number of parameters.

• Suppose data y is generated from a true underlying model with density
g(·). We approximate g(·) by a parametric class of models fθ(·) = f(·|θ).

• Under regularity conditions, minimizing the AIC over a set of models
minimizes (an unbiased estimator of) the expected Kullback-Leibler
distance between an approximating model fθ̂ and the underlying truth g.

• For the linear mixed model, the question is: which are the correct
log-likelihood and number of parameters to use?
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The marginal AIC

The first option is to base the AIC in the linear mixed model on the
marginal log-likelihood for the marginal model (3.5),

log f(y|β,α) = `ML(θ) = −n
2

log(2π)− 1

2

N∑
i=1

log |Vi(α)|

−1

2

{
N∑
i=1

(yi −Xiβ)TVi(α)−1(yi −Xiβ)

}
.

Statistical software (e.g. lme) often returns a marginal AIC using `ML(θ̂ML)
and with df set to the total number of parameters in θ = (α,β).
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The marginal AIC

• The marginal AIC as predictive quantity assumes that two independent
replications z and y come from the same marginal distribution, but do
not share the same random effects. It is thus appropriate when the
focus is on the population-level fixed effects.

• The parameter space Θ for θ is not open (e.g. dkk ≥ 0), violating the
usual regularity assumptions for the AIC.

• This induces a preference for models with fewer random effects (Greven
& Kneib, 2010). The selection of fixed effects is likely not or not much
affected.
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The marginal AIC

For REML estimation, an AIC based on `REML(α̂REML) is often
returned by statistical software (e.g. lme). The marginal AIC should not be
used with REML estimation to select fixed effects as

a) the REML-likelihoods for different fixed effects are not comparable

b) the fixed effects do no even occur in the REML-likelihood

c) additionally, the used degrees of freedom often incorrectly still include
the number of fixed effects.
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The conditional AIC

An alternative is to base the AIC on the conditional log-likelihood

log f(y|b,β,α) = −n
2

log(2π)− 1

2

N∑
i=1

log |Σi(α)|

−1

2

{
N∑
i=1

(yi −Xiβ −Zibi)TΣi(α)−1(yi −Xiβ −Zibi)

}
.

The conditional AIC uses log f(y|b̂, β̂, α̂), where the predicted or estimated
quantities can be based on ML or REML estimation. The conditional
log-likelihood is always based on Y and valid with ML or REML estimation.
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The conditional AIC

• The conditional AIC as a predictive quantity assumes that two indepen-
dent replications z and y come from the same conditional distribution
and share the same random effects. Vaida & Blanchard (2005) argue
that it is appropriate when the focus is on the random effects.

• Greven & Kneib (2010) propose an unbiased estimator for the degrees
of freedom in the conditional AIC (when R = σ2In), implemented in
R-package cAIC4 for models fitted with lme4 or gamm4. The random
effects, due to shrinkage, contribute between 0 and Nq df.
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Example rat data
Consider again the random intercept model for the rat data

Yij = β0 + b1i + βgitj + εij

with transformed time tj and compare with the untransformed time TIMEj.

> lmet <- lme(RESPONSE ~ group * t - group,

random = ~ 1 | SUBJECT, data = rats, method = "ML")

> lmeTIME <- lme(RESPONSE ~ group * TIME - group,

random = ~ 1 | SUBJECT, data = rats, method = "ML")

> anova(lmet, lmeTIME)

Model df AIC BIC logLik

lmet 1 6 931.9924 953.169 -459.9962

lmeTIME 2 6 1074.0125 1095.189 -531.0063

Interpretation?
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Example sleep deprivation study

For the sleep deprivation data, compare a model with a random intercept
with a model with random intercept and slope.

> library(lme4)

> library(cAIC4)

> M1 <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)

> M2 <- lmer(Reaction ~ Days + (1 + Days | Subject), sleepstudy)

> cAIC(M1)$caic

[1] 1767.118

> cAIC(M2)$caic

[1] 1711.618

Interpretation?
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Overview Chapter 7 - Model building and model choice

7.1 Model diagnostics

7.2 Model choice

7.3 Assumptions and confounding
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Excursus: Linear regression

In linear regression
Yi = xTi β + εi (7.1)

we have the assumption
E[εi|xi] = 0 (7.2)

s.t. E[Yi|xi] = xTi β. If this is not fulfilled, the estimator of β will be biased.

A common reason for violation of (7.2), i.e. endogeneity, is that an
important confounder zi was omitted from (7.1). E.g.

• Yi the number of children born in a village

• xi the number of stork nests in the same village

Omitted variable: zi the number of roofs in the village.
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Assumptions in LMMs

Yij = xTijβ + zTijbi + εij

In LMMs, we have two random variables in the model and two assump-
tions, which need to be fulfilled for β to be unbiasedly estimated.

• A similar assumption on the residuals as in the linear model:
E(εij|xij′, bi) = 0 for all i, j, j′, with xij the jth row of Xi.

• In addition, the random effects assumption
E(bi|xij) = 0 for all i, j.

If both are fulfilled, E(Yi|Xi, bi) = Xiβ + Zibi and E(Yi|Xi) = Xiβ.
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Sources of Variation and Confounding

Similarly to Chapter 1 and for a single covariate, think of decomposing

Yij = β0 + βBx̄i + βW (xij − x̄i) + bi + εij,

x̄i =
∑ni
j=1 xij/ni. βB and βW may be differently affected by confounding.

• βB is estimated from between-subject information. Does Ȳi go up/down
on average if x̄i increases? E(bi|xij) 6= 0 can occur due to confounding

on the level of subjects, and β̂B will then be biased.

• βW is estimated from within-subject information. Does Yij go up/down
on average if xij increases relative to x̄i? E(εij|xij′, bi) 6= 0 can occur

due to confounding within subjects, and β̂W will then be biased.
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We often do not decompose xij, and our estimate β̂ will then be a weighted

average of β̂B and β̂W . It is thus important to consider whether either source
of information might be confounded (and if βB = βW can be assumed).

Example of potential confounding within subjects:

• Yij: mortality count on day j in city i

• xij: PM10 level on day j in city i (time-varying)

• zij: temperature on day j in city i (time-varying) - both mortality counts
(flue etc.) and PM10 levels are higher in the winter, see Ch. 1.1.

This leads to a violation of the assumption on the residuals.
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Confounding between subjects - Example 1

Consider a randomized trial where at the beginning of the trial, subjects
are randomized to treatment groups (x = 1 or x = 0). In this case, xi
is independent of bi by design and the treatment effect can be unbiasedly
estimated (e.g. rat data, TLC trial).

While violations of the second assumption cannot happen for x if we
randomize with respect to x, they can occur in observational studies
where we cannot control the x variables and confounding is possible.
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Confounding between subjects - Example 2

Consider the model

Yij = β0 + β1PM10ij + bi + εij.

• PM10ij is the personal exposure to PM10, an air pollutant, and

• Yij is the FEV1 value, a measure of lung function, for subject i at time tij

and interest lies in the association between PM10 and FEV1. What happens
if poorer people are

a) less healthy and thus have lower FEV1 values and

b) tend to live closer to big roads and are exposed to higher PM10 levels?
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Then bi, capturing the average FEV1 level Ȳi of subject i, will be lower for
poorer subjects, and due to the correlation between poverty and PM10, also
be lower for higher PM10 exposure.

As E[bi|PM10ij] decreases with PM10ij, the estimate of β1 will be
confounded, i.e. the estimate is too strongly negative.

The bias can be avoided if socio-economic information is included in the
model, provided the effect is modeled well.
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Confounding between subjects - Example 3

Consider the model

Yij = f(ageij) + bi + εij.

• Yij is the life satisfaction of subject i at time point tij in a panel study,

• ageij is the age of subject i at time point tij,

• bi represents the individual tendency to be satisfied with life

and interest lies in the trend of life satisfaction with age.

What if happy people live longer? Then, E[bi|ageij] is higher for ol-
der ageij and the estimated trend will correspond to the trend among
survivors.
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Fixed vs. random effects bi

Some people recommend replacing the random effects bi by fixed
effects bi (fixed effects model) if there are doubts about the random
effects assumption. Then, only intra-individual variability (within subject
information) contributes to the estimates for β and each subject serves as its
own control, cf. slide 14 in Ch. 1.1. Some pros and cons (see e.g. Townsend
et al, 2013 for a full discussion):

+ In the fixed effects model, estimators for β are unbiased if the assumption
on the residuals holds.

– When the random effects assumption is satisfied, random effects models
are more efficient. (“Bias-variance-tradeoff”)
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– Some ni may be too small to estimate all random effects as fixed effects.

– Fixed effects models are more susceptible to violations of the first
assumption, which can be more severe than the violation of the random
effects assumption.

– Fixed effects models cannot estimate effects of time-constant variables
(e.g. gender, treatment). Effects of time-varying covariates are less
precisely estimated than in random effects models due to the additional
degrees of freedom used. (E.g. for the effect of place of residency, only
people who move during the study contribute to the estimate.)

Thus, to decide between a fixed and random effects model, one needs to
weigh the plausibility of the two assumptions, whether the effects of interest
can be estimated, and the tradeoff between how much bias can be reduced
and how much efficiency is lost with the fixed effects model.
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Fixed vs. random effects

The Hausmann test compares random and fixed effects model estimates
of β. A significant result is fairly reliable evidence for a bias in the effect
estimates of the random effects model. (Non-significance unfortunately not
necessarily indicates unbiasedness.)

An alternative is to decompose the information as on slide 42 (hybrid
model). Estimates and standard errors for βW are comparable to the fixed
effects model, but time-constant variables can also be included in the model.
A test for βW = βB provides a Hausmann-like test.
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Fixed vs. random effects - Example

Consider this example from Townsend et al, 2013 on US education policy:

NAEPij = xTijβ + δStandardi,j−1 + bi + εij

• NAEPij the average National Assessment of Educational Progress
(NAEP) grade 4 mathematics score in state i in year j

• xij control variables measuring race composition, poverty etc. in state i
and year j as well as year indicators

• Standardi,j−1 the state performance standard for its state grade 4
mathematics test (with time lag), the policy variable of interest

Data for the 50 states are available for only 3 years, with some data missing.
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Random effects assumption - Example 4

• The random effects model yields δ̂ = 0.058 (0.024) (p < 0.05).

• The fixed effects model and the hybrid model both yield estimates
0.032 (0.023) for δ respectively δW , a smaller and non-significant value.
The estimate for δB is 0.164 (0.041).

• The Hausmann test and the test for δW = δB are both significant. Thus,
the fixed effects model may be accounting for heterogeneity between
states that can bias the δ estimate in the random effects model.
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