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Generalized linear mixed models (GLMMs)

e Conditional on the random effects b;, Y;;,7 = 1,...,n;, are independent
and follow a distribution from the exponential family:

(yzj|b'w/8 ¢) - exp{qﬁ [yw 1 w(‘gzj)] + C(yija ¢)}
e The conditional mean p;; = E(Y;;|b;) is given by
9(pij) = x ;8 + z;bi,

where x;; and z;; are p- and g-vectors of known covariates and g is a
known link function. With the natural link, 6;; = x; ,8 -+ z

zzd

e b, i.i.d. multivariate normal: b; 4(0,D).
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Generalized linear mixed models (GLMMs)

f(yijbi, B, @) = exp{[yi0i; — V(0:5)]/ ¢ + c(yij, &)}

and
g(piz) = nij = Xg;ﬁ + zZ}bi.

Three components specify the GLMM:
e Distributional assumption: Choice of the density f(.|b;)
e Systematic component: Linear predictor 7;; = x;;,3 + z;;b;

e Link function g. g(,uzj) = g(E(l/zﬂbz)) — XZ;,B + Z;Z;bz

Analysis of Longitudinal Data, Summer Term 2017



Generalized linear mixed models (GLMMs)

e Linear mixed models are a special case with f corresponding to the
normal density and g to the identity link.

e GLMMs are also useful for non-normal longitudinal responses.
e Estimation is generally harder for GLMMs than for LMMs, see 9.3.

e Often, only a random intercept is considered (in particular for binary
responses).
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GLMM special cases: logistic regression

e Distributional assumption: Y;;|b; ~ Bernoulli(x;,):
Var(Yij|b;) = E(Yi;bi)(1 —E(Yi;]bs)), ¢ =1
e v(pig) = paij (L — paj)
e Systematic component:

nij = X8+ z,;b;

e Natural link function:

P(Y;; = 1]b;)
P(Y;; = 0|b;)

i
— Hij

log
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GLMM special cases: Poisson regression

e Distributional assumption: Y;;|b; ~ Poi(;;):
Var(Yijlb;) = E(Yi[bs), ¢=1
e v(piz) = pij
e Systematic component:

nij = X8+ z,;b;

e Natural link function:

log(E(Yi;[by)) = log(ps;) = nig = X358+ 2;b,
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The marginal correlation structure

Note that there is no residual covariance R as in the LMM, the Y;; are
conditionally independent.

However, the marginal covariance may depend on the covariates:
Cov(Yy;, Vi) = Cov(E(Y3bs), E(Yik|bi)) + E(Cov(Yij, Yik|bs))
= Cov(g™ (z;B + zi;b1), g (kB + 2ixbi))
: —1/..T T
+ 1(j = k)E(ov(g™ (x;,;8 + z;,;b:))).
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Example toenail infections

e Binary reponse severe infection Y;; (yes=1/no=0)
e 1, = 7 measurements per subject at ¢;; ~ 0, 1, 2, 3, 6, 9, 12 months
e [reatment: T; =0or1; =1

Model:
Y;'j ‘bz ~ Bernoulli(m-j)

with natural link function
logit(m;;) = Bo + b; + G115 + Batij + B3TLiti;.

and b; ~ N(0, d?).
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Interpretation of the parameters for the toenail data

P(Y:; = 11b;,T5,t:5)
P(Y;; = 0]b;, T5,t:5)

logit(m;;) = log ( ) = Lo+ bi + B11; + Batij + BaTits;.

P(Y;; = 1|b;, Ty = 1,t;,) P(Y;; = 1|b;, T; = 0, t;)
1 1] 1y -1 ’» Y1) / 1] 1y L1 y Uiy _ tz
0g { (P(Yz'j = 0|b;, T; = 1,%-)) (P()/;j = 0]b;, T; = 0, t) B1 4 Bstij

e (31 is the log-odds ratio for the difference of being in treatment group B
vs. A at baseline for a given subject.

e (3 is the log-odds ratio for differences in the changes per month between
the two treatment groups for a given subject.

The parameters differ from marginal (population average) log-odds ratios!
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Interpretation of the parameters:
Special case logistic model

exp (x;f’;ﬁ + zg;bi)
exp (XZ;,B + zg;-bz-) +1

P(Yi; = 1]b;) = E(Y;5|b;) =
Marginal expectation:
P(Yi;=1)=E(Y;y) = FE(E(Yibi))

exp (XZ;,B + zg;-bi>
exp (x;";ﬁ + zg;-bi) +1

exp(x;f’;- )
1+ exp(xg;-,@)

— Difference to the LMM, where E(Y;;) = E(E(Y;;|b;)) = x.

¥
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Example for a single continuous x
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“Nonlinear function of E(b;) # E(nonlinear function of b;)."
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Interpretation of the parameters in the GLMM

With link-function h=!(x) = z:
E(Yi;) = fE(Yz'j\bi)f(bi)dbi
= [(x};8+z];b;) f(b;)db;
Tﬁff db +z;; [ bif(b;
5

h(X’L] )

With non-linear link-function h=1(x) # :

E(Yiy;) = JE( Ym\bvz)f(bz‘)dbz'
[ h(x{;8 + zi;b;) f(b;)db;
75 h(xj; )
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Interpretation of the parameters in the GLMM

GLMM fixed effects thus differ from the corresponding marginal parameters.

Which of the two quantifies the covariate effects (better)? They both do,
although they address slightly different questions.

For example, consider a treatment effect in a logistic model for a disease.

e The parameter in the mixed model quantifies the expected change in the
log-odds of the disease for a given individual treated with this treatment.
This is of interest, for example, to a doctor treating a given patient.

e The marginal parameter quantifies the expected change in the log-odds
of the disease in the population if everyone were given this treatment.
This is of interest, for example, to epidemiologists studying the benefit
of the treatment in the general population.
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ML estimation

(Marginal) likelihood contribution for subject i:

f(yilB. D, o) / 1 # (vl 3.6 (bi| D)

Re J=1

Likelihood:

N
L(B,D,¢) = |]/f(vilB D,9)
1 =1

=TI/ TL /oo os (D)
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ML estimation

For the linear mixed model, the marginal density f(y;|3, D, ¢) could be
obtained explicitly as the N(X;3,Z;DZ} + 3,) density.

For general GLMMs, maximization is made difficult by the product of
the N g-dimensional integrals over the random effects. In general, numerical
approximations have to be used. This is still an area of active research.

There are three different main approaches:
e approximate the data
e approximate the integrand

e approximate the integral.
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Approximate the data: Penalized quasi-likelihood (PQL)

PQL decomposes Y;; into the mean p;; = E(Y;;|b;) plus an error term
€;; with variance Var(Y;;|b;). It then uses a Taylor approximation around

current estimates 3, b;.
Yij = pij+e;= h(a:,gﬂ + Zg;bz') + €5
- T3 T 1T 72 Ti.T(a_ 7
~ h(x;;B+ z;;b) +h(x;;8+ z;;b;))x;;(B — B)
—|—h’(a:'£-B + Zggz)zz;(bz - Bz) T €ij
= fij + o(fiy)z (8 — B) + v(fis;) z;(bi — by) + €55

assuming a natural link function, i.e. h(-) = ¢'(-) = h'(n:;) = v(pi;)-
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In  matrix-vector notation with p, = (li1,...,lin,), Vi =
diag(v(ﬁil)a s 7v(ﬁini)):

Y~ B+ ViXi(B—B)+ViZib — b)) +¢
s V, Yi—p)+XB+Zb~X,B+Zb,+V, ¢

~ 1
where Y, denotes the left-hand side of the equation and ef =V,
~ 1

. A~ —1 A~ —]_
mean zero and covariance ¢V, V,V. = ¢V,

This can be viewed as a linear mixed model for the pseudo data Y';.
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PQL Algorithm

[1] [1]

Initialize e.g. B as an estimate from a GLM and b = 0.
For Kk =1,2,... iterate the following two steps until convergence:

. ~[k] ~[k] : «[K]
e Step A: For given 3 ,b , obtain new pseudo data Y,

~ [K] . . ~
V., = dlag(v(,u,gli]), . ,v(,uq[ﬁ]z))

and estimates

e Step B: For given pseudo data Y:[k], fit model (9.1) and update estimates
~[k+1] ~[k ~ ~[k+1
,8[ N ], D[ H] and ¢!*t1 and predictions b[ " ].

(Breslow & Clayton, 1993)
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PQL: Another justification

In the LMM, Henderson's mixed model equations for B and b result
when maximizing the penalized log-likelihood

1 _
log f(y[b) — §bTG 'b,

where G = diag(D, ..., D). Maximizing this penalized log-likelihood for
given D and ¢ in the GLMM using Fisher scoring or Newton-Raphson also
leads to (9.1).
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PQL: Remarks

e PQL is the default in the gamm() function in the R package mgcv.

e PQL uses an approximate likelihood and is exact only for LMMs. It works
better for larger n; and for Y;; closer to normal, e.g. for larger means
in Poisson regression, or larger denominators in binomial proportions. It
can be seriously biased for binary responses with relatively small n;.

e The PQL estimates are consistent only if both NV, n; — oc.

e REML can be used instead of ML when estimating D and ¢ in (9.1).

e PQL can also be used to give starting values for other methods.
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Approximate the integrand: The Laplace approximation

Idea: In

Z; 5:/ﬂf(yiﬂbia/@agb)f(bi‘D)dbi =: /GXP{Qz’(bi)}dbi

Rre J=1 R4

approximate ;(b;) by a second-order Taylor approximation around the
maximizer b; of Q;(-),

1 AN AN AN

Qi(bi) = Qi(bi) + 5(bi — bi) " Q' (B:)(b; — b).
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As the normal density integrates to 1,

I~ ep{Q)) [ e { - b BT QB (b - z?@-)}dbi

= (2m)92 — Q' (b)) 2 exp{Qi (b))}, (9.2)
where —Q;’(bz) — D_1—|—gb_1Z;rVZZZ with V,; = diag(v(,uﬂ), . ,v(,umz))

The modes l;z depend on the unknown parameters 3, D and ¢.
The numerical maximization of the likelihood thus iterates between

a) updating the b, as maximizers of Qi(+) with current estimates B D and
¢ fixed (via penalized iteratively reweighted least squares (P-IRLS)),

b) updatlng estimates for B D and ¢ maximizing approximation (9.2) to
HZ . Z; with current b; (numerical optimization).

Analysis of Longitudinal Data, Summer Term 2017 24



Laplace approximation: Remarks

e The Laplace approximation tends to be the fastest approximation and is
the default in function glmer in 1me4.

e The approximation is only exact in LMMs, where Q(b;) is quadratic.

e The approximation tends to be better for larger cluster sizes n;, and for

less “discreteness” of the response (e.g. for Poisson rather than logistic
regression) (Joe, 2008).
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Approximate the integral: Gaussian quadrature

Reminder: We want to maximize

N n;
H/Hf(yij\buﬂ,fb)f(bilD)dbi.
i=1" j=1

Idea: If ¢(z) is the density of the multivariate standard normal distribution
and f(z) a known function, we can approximate

Q
[ f@6(=)dz = Y wis ().

where () is the degree of the approximation and the w; are appropriately
chosen weights.
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Approximate the integral: Gaussian quadrature

e The random effects b; need to be standardized: 8§, = D—1/?b,

e Then, with n;; = a:g;ﬂ + 25D1/25i, the integral

F3:18.0.0) = [ T[ £(usbs. 8.0)f (b D)ib:
j=1

= / H f(yijl0:,8,0,D) f(d;)dé;
i=1

has the form [ f(z)¢(z)dz and can be approximated as [ f(z)¢(z)dz ~
S wif(z).
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Gaussian quadrature: Remarks

Precision increases with the number of quadrature points ) (Trade-off
computation time < precision) = Increase () until there is no change in
the estimates.

There are standard tables / algorithms for z; and w;. However, the z; are
not optimized to cluster in regions where f(z) differs strongly from 0.

Adaptive Gaussian quadrature (e.g. Molenberghs & Verbeke, 2005,
p. 274) chooses the z; more suitably and typically needs (much) fe-
wer z;. However, it is more time-consuming, as z; and w; - which both
depend on 3, D und ¢ - have to be computed in each iteration.

Adaptive Gaussian quadrature can be chosen as an option in function
glmer in 1me4 for ¢ = 1. It generally is intractable if ¢ > 2.

For () = 1, adaptive Gaussian quadrature is the Laplace approximation.
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Inference

e As ML estimation is used, 8 < N (8,Z~1) for N — 0o with Z the Fisher
information matrix. Wald-, likelihood ratio or score tests can be used
with corresponding x? null distributions.

e The goodness of the approximation depends on N and on the goodness
of the approximation to the likelihood.

e PQL estimation is based on the likelihood of pseudo data and thus, no
likelihood ratio test is possible. Inference is often based on the LMM for
the pseudo data. However, 3 is not consistent in general.

e When testing parameters in D, the same asymptotic x* mixture distri-
butions apply as in the LMM (boundary of the parameter space).
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Implementation of GLMMs
e Function glmer in R package 1me4: Laplace approximation (default) and
adaptive Gaussian quadrature (for nAGQ = @ and ) > 1)

e Function glmmPQL in R package MASS: PQL (calls 1me repeatedly).
Used internally by gamm in R package mgcv.

In SAS: PROC GLIMMIX (PQL) or PROC NLMIXED ((adaptive) Gaussian
quadrature).
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Example: Toenail infections

logit(m;;) = Bo + b; + G115 + Batij + B3Titi;.

> for (Q in c¢(1,3,5,10,20,25)){

+ glmml <- glmer (Response ~ Month * Treatment + (1 | ID),
+ family = binomial, nAGQ = Q)

+  print(fixef (glmm1))

+ }

Q=1 Q=3 Q=5 Q=10 Q=20 Q=25
Bo | -251 203 -146 -164 -162  -1.61
B; | -030 -021 -013 -0.16 -0.16  -0.16
B, | -040 -0.40 -038  -0.39  -0.39  -0.39
By | -014 -014 -0.13  -0.14  -0.14  -0.14
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Example: Toenail infections

For () = 25:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -1.61833 0.43329 -3.735 0.000188 x*x*x*
Month -0.39084 0.04433 -8.817 < 2e-16 *x*x
Treatment -0.16081 0.58379 -0.275 0.782968

Month:Treatment -0.13672  0.06799 -2.011 0.044337 *
Compare this to a fit using PQL (package mgcv):

> gamm(Response ~ Month * Treatment, random = 1list(ID = 7 1),
family = binomial)
Value Std.Error DF  t-value p-value

X(Intercept) -0.7452137 0.2455531 1612 -3.034837 0.0024
XMonth -0.2960060 0.0314941 1612 -9.398770 0.0000
XTreatment -0.0355670 0.3481161 292 -0.102170 0.9187

XMonth:Treatment -0.1005177 0.0499676 1612 -2.011659 0.0444
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Example: Epileptic seizures
Model:

log E(Y;j|bi) = logTi; + b1+ B2Fij + B3 B; + BaBiF;
+ bi1 + biaFij
= logTi; + (B1 + bi1) + (B2 + bi2) Fi;
+ B3Bi + BaBiFij

® Tij = Iength of observation period: Til = &, Ti2 = Tig = Ti4 = Ti5 = 2.
e B, =0 for placebo, B; = 1 for progabide.
o [1;; = 0 for baseline, F;; =1 else.

Interpretation?
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Example: Epileptic seizures

Assumptions:
e Conditional on by, Y;; is Poisson distributed:
Var(Yij|b;) = E(Yi5|bi), ¢ =1

o bz ~ NQ(O, D)

Group Time log (E(Yiﬂbi))

Placebo Baseline B1 + bi1
Follow-up (81 + bi1) + (B2 + bi2)
Progabide Baseline (B1 + bi1) + B3
Follow-up  (B1 4+ bi1) + (B2 + bi2) + B3 + Ba

Analysis of Longitudinal Data, Summer Term 2017

35



Epileptic seizures: R-code and results

> seiz$followup <- (seiz$visit > 0)
> glmml <- glmer (count ~ offset(log(weeks)) + followup * group +
(1 + followup | id), family = poisson)

Estimate Std. Error z wvalue Pr(>|z|)

(Intercept) 1.071299  0.140267 7.638 2.21e-14 x**x
followupTRUE -0.002394 0.109092 -0.022 0.9825
group 0.049481 0.192716  0.257 0.7974

followupTRUE:group -0.307159 0.150452 -2.042 0.0412 x*

Random effects:
Groups Name Variance Std.Dev. Corr
id (Intercept) 0.4999 0.7070
followupTRUE 0.2319 0.4815 0.17

Interpretation? Which method is used for fitting?
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Epileptic seizures: R-code and results

Higher-order Gaussian quadrature is only available for models with ¢ = 1:

> glmm2GQ <- glmer(count ~ offset(log(weeks)) + followup * group +
(1 | id), family = poisson, nAGQ = 20)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.03259 0.15269 6.763 1.35e-11 *x*x
followupTRUE 0.11080 0.04689 2.363 0.0181 =
group -0.02387 0.21067 -0.113 0.9098

followupTRUE:group -0.10368 0.06505 -1.594 0.1110

> glmm2LA <- glmer(count ~ offset(log(weeks)) + followup * group +
(1 | id), family = poisson)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.03265 0.15254 6.769 1.29e-11 x*x*x
followupTRUE 0.11080 0.04672 2.371 0.0177 *
group -0.02385 0.21047 -0.113 0.9098

followupTRUE:group -0.10368 0.06482 -1.599 0.1097
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Final remarks

e There are often convergence problems if several random effects are
included in the model, in particular for binary responses if n; is not large.

e For count data, it is often less problematic to include more than a random
intercept in the model.

e Several extensions exist, e.g. to GLMMSs with serial correlation, non-
normal random effects etc.
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