
Semiparametric smoothing methods

• Assumptions: Only one observation yi per subject at time point ti.

• Data are thus of the form

(ti, yi), i = 1, . . . , N.

• Goal: Estimation of the unknown mean curve µ(t) in the model

Yi = µ(ti) + εi,

where the εi are independent with mean 0.
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Kernel methods: “Sliding window”

• Consider a window around time point t1.

• Let µ̂(t1) be the average of all yi corresponding to ti in that window.

• Analogously for µ̂(t2), µ̂(t3), . . ..

→ Sliding window for the estimation.
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Kernel methods: “Sliding window”

The width of the window is important:

• If the width is chosen very small, the window can include only one
observation at the one extreme → interpolation instead of smoothing!

• If the width is chosen very wide, the window can include all observations
at the other extreme. This yields a constant:

µ̂(t) =
1
N

N∑
i=1

yi.
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Kernel methods in general

• With the sliding window method, each observation gets the weight 1 (“in
the window”) oder 0 (“outside the window”).

• This method is a special case of kernel smoothing methods.

• More generally, choose a smooth weight function that gives more
weight to observations nearer in time than to observations further away.

• Common choice: Gaussian kernel

K(u) = exp(−0.5u2).
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Kernel methods in general

• Definition of the kernel estimator:

µ̂(t) =
N∑

i=1

w(t, ti, h)∑N
i=1w(t, ti, h)

yi,

where w(t, ti, h) = K ((t− ti)/h) are the weights and h is the bandwidth.

• Larger values for h yield smoother curves.

• We’ll discuss the choice of h in a few slides.

• How is the kernel K defined for the sliding window method?
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Smoothing splines (Silverman, 1985)

• If we assume µ(t) can be well approximated by a twice continuous diffe-
rentiable function s(t) with second derivative s′′(t), consider minimizing

J(λ) =
N∑

i=1

(yi − s(ti))2 + λ

∫
{s′′(t)}2dt.

• The solution can be shown to be a natural cubic spline (a two times
differentiable function consisting of piecewise cubic polynomials) with
knots at the ti and can be obtained from (relatively simple) linear
equations.

• Penalized splines are an alternative that is computationally less deman-
ding and can be incorporate into more complex models, see Chapter 6.2.
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Lo(w)ess smoothing (Cleveland, 1979)

• LOWESS = LOcally WEighted regression Scatterplot Smoothing

• Function lowess in R

• Lo(w)ess can be seen as an extension of kernel methods: at each point ti,
a local polynomial regression is fitted using weighted least squares, giving
more weight to observations closer by.

• There is an iterative version that is more robust to outliers, giving them
smaller weight.
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Choice of smoothing parameters

• In all three approaches (kernel, splines, lowess), the smoothness of the
estimated curves is controlled by one smoothing parameter (e.g. h, λ).
This parameter is typically chosen to optimize a criterion.

• Goal: compromise between bias and variance.

• A common criterion that combines bias and variance is the mean squared
error, MSE (analogously for h instead of λ):

MSE(λ) =
1
N

N∑
i=1

{y∗i − µ̂(ti;λ)}2,

where y∗i is a new observation at time point ti.
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Choice of smoothing parameters

MSE(λ) =
1
N

N∑
i=1

{y∗i − µ̂(ti;λ)}2

Observations yi which were used for estimation of µ should not be compared
to µ̂(ti): This would lead to always choosing the smallest band width h or
penalty λ and to interpolation instead of a smooth curve (overfitting).

Solution: cross-validation (analogously for h instead of λ)

CV (λ) =
1
N

N∑
i=1

{yi − µ̂−i(ti;λ)}2,

where µ̂−i(ti;λ) is obtained without observation i. See Chapter 6.2 for
mixed model-based estimation of smoothing parameters.
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Note

• Please note that these smoothing methods (and the criterion for the
choice of the smoothing parameter) assume independent and identically
distributed (i.i.d.) errors.

• Also, dropout and missing values are not
taken into account.

• They can still be useful exploratory tools.

• Example CD4 data: See lab.

• For how to incorporate smooth mean functions
in mixed models accounting for repeated measu-
rements, please see Chapter 6.2.
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