Tutorium 5

Analyse longitudinaler Daten

Prof. Dr. Sonja Greven, Almond Stöcker, Johanna Völkl

Material: Alexander Bauer

18. Juli 2017

Übersicht

- 🚺 Modellwahl
- GLMMs & Marginale Modelle
- 3 Parameterinterpretation: GLMMs vs. Marginale Modelle
- 4 GLMMs & Marginale Modelle in R

Modellwahl

- Modellwahl
- 2 GLMMs & Marginale Modelle
- 3 Parameterinterpretation: GLMMs vs. Marginale Modelle
- 4 GLMMs & Marginale Modelle in R

Modellwahl

Ziel: Wahl des optimalen Modells durch Vergleich der (nicht notwendigerweise genesteten) Modelle M_1 und M_2

Informationskriterien:

- AIC = -2I + 2df
- BIC = -2I + log(n)dfmit maximaler log-Likelihood I, Fallzahl n und Anzahl Parameter df
- Zu treffende Entscheidungen:
 - 1) Verwendung welcher Likelihood?
 - 2) Wie definiert man die Parameterzahl? (Definition von *df* im Gemischten Modell nicht offensichtlich)

Modellwahl

Informationskriterien im LLMM:

- Das marginale AIC (mAIC):
 - Verwendung der marginalen Likelihood
 - $df \stackrel{z.B.}{=}$ Anzahl aller Parameter in θ
 - Annahme: zwei unabhängige Beobachtungen entstammen gleicher marginaler Verteilung, teilen aber nicht die gleichen random effects
 - ⇒ Fokus auf populationsspezifische fixed effects
 - ⇒ Bei verschiedenen fixed effects: Benutzung nur mit ML-Likelihood!
- Das konditionale AIC (cAIC):
 - Verwendung der konditionalen Likelihood

 - Annahme: zwei unabhängige Beobachtungen entstammen gleicher konditionaler Verteilung und teilen die gleichen random effects.
 - ⇒ Fokus auf Subjekte bzw. random effects
- Beachten: AIC(lme) in R gibt mAIC zurück!

GLMMs & Marginale Modelle

- Modellwahl
- Q GLMMs & Marginale Modelle
- 3 Parameterinterpretation: GLMMs vs. Marginale Modelle
- GLMMs & Marginale Modelle in R

Notwendige Komponenten für **Definition eines GLMM**:

1) Verteilungsannahme:

$$Y_{ij}|\mathbf{b}_i \stackrel{u.}{\sim} \mathsf{Expo-Fam.}(\theta_{ij},\phi)$$

$$\widehat{=} f(Y_{ij} = y_{ij} | \mathbf{b}_i, \boldsymbol{\beta}, \phi) = \exp \left\{ \frac{y_{ij} \theta_{ij} - \phi(\theta_{ij})}{\phi} + c(y_{ij}, \phi) \right\}$$

2) Systematische Komponente: Spezifizierung des linearen Prädiktors

$$\eta_{ij} = \mathbf{x}_{ij}^T \boldsymbol{\beta} + \mathbf{z}_{ij}^T \mathbf{b}_i, \qquad \mathbf{b}_i \overset{iid}{\sim} \mathcal{N}_q(\mathbf{0}, \mathbf{D})$$

3) **Linkfunktion:** Wahl der Linkfunktion $g(\cdot)$

$$g(\mu_{ij}) = \eta_{ij}$$

mit $\mu_{ii} = \mathbb{E}(Y_{ii}|\mathbf{b}_i)$ dem konditionalen Erwartungswert

Schätzung im GLMM:

Schwierigkeit: Sehr komplexe Likelihood

$$L(\boldsymbol{\beta}, \mathbf{D}, \phi) = \prod_{i=1}^{N} \int_{\mathbb{R}^{q}} \prod_{j=1}^{n_{i}} f(\mathbf{y}_{ij}|\mathbf{b}_{i}, \boldsymbol{\beta}, \phi) f(\mathbf{b}_{i}|\mathbf{D}) d\mathbf{b}_{i}$$

Mögliche numerische Approximationen:

- i) Approximation der Daten: Penalisierte Quasi-Likelihood (PQL)
 - Ansatz: Darstellung von Y_{ij} durch Taylor-Approximation
 - \Rightarrow Schätzung per Schaukel-Algorithmus (Äquivalent zu LMM-Schätzung auf Pseudo-Daten Y_{ij}^*)
 - Kein LQ-Test/AIC, da Verwendung von Pseudo-Likelihood!
 - Besser, je größer n_i und je näher Y_{ii} an NV

Schätzung im GLMM:

Schwierigkeit: Sehr komplexe Likelihood

$$L(\boldsymbol{\beta}, \mathbf{D}, \phi) = \prod_{i=1}^{N} \int_{\mathbb{R}^{q}} \prod_{j=1}^{n_{i}} f(\mathbf{y}_{ij}|\mathbf{b}_{i}, \boldsymbol{\beta}, \phi) f(\mathbf{b}_{i}|\mathbf{D}) d\mathbf{b}_{i}$$

Mögliche numerische Approximationen:

- ii) Approximation des Integranden: Laplace-Approximation
 - Ansatz: Darstellung des Integranden als $\int_{\mathbb{R}^q} \exp\{Q_i(\mathbf{b}_i)\}d\mathbf{b}_i$
 - \Rightarrow Approximation von $Q_i(\mathbf{b}_i)$ durch Taylor-Approximation
 - ⇒ Schätzung per Schaukel-Algorithmus
 - führt zu schneller Schätzung
 - Besser, je größer n_i und je "weniger diskret" Y_{ij}

Schätzung im GLMM:

Schwierigkeit: Sehr komplexe Likelihood

$$L(\boldsymbol{\beta}, \mathbf{D}, \phi) = \prod_{i=1}^{N} \int_{\mathbb{R}^{q}} \prod_{j=1}^{n_{i}} f(\mathbf{y}_{ij}|\mathbf{b}_{i}, \boldsymbol{\beta}, \phi) f(\mathbf{b}_{i}|\mathbf{D}) d\mathbf{b}_{i}$$

Mögliche numerische Approximationen:

- iii) Approximation des Integrals: Gauß-Quadratur
 - Likelihood-Teile: $f(\mathbf{y}_i|\boldsymbol{\beta},\mathbf{D},\phi) = \int_{\mathbb{R}^q} \prod f(y_{ij}|\mathbf{b}_i,\boldsymbol{\beta},\phi) f(\mathbf{b}_i|\mathbf{D}) d\mathbf{b}_i$
 - Ansatz: $\int_{\mathbb{R}^q} f(\mathbf{z}) \phi(\mathbf{z}) d\mathbf{z} \approx \sum_{l=1}^Q w_l f(\mathbf{z}_l)$ mit $f(\mathbf{z})$ bekannt, MNV-Dichte $\phi(\mathbf{z})$, Gewichten w_l , Stützstellen \mathbf{z}_l
 - je höher Q, desto genauere Approximation $(Q=1
 ightarrow \mathsf{Laplace} ext{-Approximation})$

Alternativer Ansatz zu GLMMs: Marginale Modelle

Komponenten eines marginalen Modells:

1) Spezifizierung der marginalen Erwartung $\mu_{ij} = \mathbb{E}(Y_{ij})$:

$$g(\mu_{ij}) = \eta_{ij} = \mathbf{x}_{ij}^{\mathsf{T}} \boldsymbol{\beta}$$

2) Spezifizierung der marginalen Varianz in Abhängigkeit von μ_{ij} :

$$Var(Y_{ij}) = \phi v(\mu_{ij})$$

3) Spezifizierung der Korrelation zwischen den Y_{ij} als Funktion ρ in Abhängigkeit von einem (zu schätzenden) Parameter α :

$$Corr(Y_{ij}, Y_{ik}) = \rho(\mu_{ij}, \mu_{ik}; \boldsymbol{\alpha})$$

Beispiele für Spezifizierung der Korrelationsstruktur:

- $Corr(Y_{ij}, Y_{ik}) = \alpha^{|k-j|} \text{ mit } \alpha \leq 1$
- $Corr(Y_{ij}, Y_{ik}) = \alpha_{jk}$ (unstrukturiert)

Marginale Modelle:

- Explizite Modellierung der Korrelation, keine Random Effects
- Problem: Gemeinsame Verteilung der Y_{i1}, \ldots, Y_{in_i} teilweise sehr komplex / nicht voll spezifiziert
 - ⇒ Alternative zu aufwendigen ML-Verfahren: Schätzung per GEE

Generalized Estimating Equations (Schätzmethode):

- Fokus auf Modellierung des marginalen Erwartungswerts
 - ⇒ keine Spezifizierung der gemeinsamen Verteilung notwendig
- Erweiterung der Quasi-Likelihood Methode für korrelierte Messungen
 - ⇒ Schätzung auf Basis einer Arbeitskorrelation
 - ⇒ Konsistente Schätzung auch bei falscher Korrelationsstruktur

GEE-Ansatz:

ullet Erinnerung: GLS-Optimierungskriterium zur Schätzung von $oldsymbol{eta}$

$$\sum_{i=1}^{N} (\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta})^T \mathbf{V}_i^{-1} (\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta})$$

GEE-Ansatz:

• GEE: Minimierung von

$$\sum_{i=1}^{N} (\mathbf{y}_i - \boldsymbol{\mu}_i(oldsymbol{eta}))^{\mathsf{T}} \mathbf{V}_i^{-1} (\mathbf{y}_i - \boldsymbol{\mu}_i(oldsymbol{eta})),$$

mit Arbeitskovarianz V_i und

$$\mu_{ij} = \mu_{ij}(\boldsymbol{\beta}) = g^{-1}(\mathbf{x}_{ij}^T \boldsymbol{\beta}).$$

⇒ Score-Gleichungen:

$$\sum_{i=1}^{N} \left(\frac{\partial \boldsymbol{\mu}_i}{\partial \boldsymbol{\beta}} \right)^{\mathsf{T}} \mathbf{V}_i^{-1} (\mathbf{y}_i - \boldsymbol{\mu}_i) = \mathbf{0}$$

- Modellwahl
- 2 GLMMs & Marginale Modelle
- 3 Parameterinterpretation: GLMMs vs. Marginale Modelle
- 4 GLMMs & Marginale Modelle in R

Im Folgenden Betrachtung von Gemischten Modellen der Form:

1) Verteilungsannahme:

$$Y_{ij}|\mathbf{b}_i \stackrel{u.}{\sim}$$
 siehe folgende Folien

2) Systematische Komponente:

$$\eta_{ij} = \beta_0 + \beta_1 x_{ij} + b_i$$
$$b_i \overset{u.i.v.}{\sim} \mathcal{N}(0, \tau^2)$$

3) Linkfunktion:

$$g(\mu_{ij}) = \eta_{ij}$$

mit $g(\cdot) =$ siehe folgende Folien

Interpretation im LMM:

Betrachte Modell mit $Y_{ij}|\mathbf{b}_i \stackrel{u.}{\sim} \mathcal{N}(\mu_{ij}, \sigma^2)$ und $g(\mu_{ij}) = \mu_{ij}$.

Konditionale Erwartung:

$$\mathbb{E}_{Y|b}(Y_{ij}|b_i) = \beta_0 + \beta_1 x_{ij} + b_i$$

Marginale Erwartung:

$$\mathbb{E}_{Y}(Y_{ij}) = \mathbb{E}_{b}(\mathbb{E}_{Y|b}(Y_{ij}|b_{i}))$$

$$= \beta_{0} + \beta_{1}x_{ij} + \mathbb{E}_{b}(b_{i})$$

$$= \beta_{0} + \beta_{1}x_{ij}$$

⇒ Parameter lassen sich im LMM sowohl subjekt-spezifisch als auch populationsspezifisch interpretieren!

Interpretation im GLMM: Beispiel Logit-Link

Betrachte Modell mit $Y_{ij}|\mathbf{b}_i \stackrel{u.}{\sim} B(\mu_{ij})$ und $g(\mu_{ij}) = \text{logit}(\mu_{ij})$.

Konditionale Erwartung:

$$P(Y_{ij} = 1|b_i) = \mathbb{E}_{Y|b}(Y_{ij}|b_i) = \frac{\exp(\beta_0 + \beta_1 x_{ij} + b_i)}{\exp(\beta_0 + \beta_1 x_{ij} + b_i) + 1}$$

Marginale Erwartung:

$$P(Y_{ij} = 1) = \mathbb{E}_{b}(\mathbb{E}_{Y|b}(Y_{ij}|b_{i})) = \mathbb{E}_{b}\left[\frac{\exp(\beta_{0} + \beta_{1}x_{ij} + b_{i})}{\exp(\beta_{0} + \beta_{1}x_{ij} + b_{i}) + 1}\right]$$

$$\neq \frac{\exp(\beta_{0} + \beta_{1}x_{ij} + \mathbb{E}_{b}(b_{i}))}{\exp(\beta_{0} + \beta_{1}x_{ij} + \mathbb{E}_{b}(b_{i})) + 1} = \frac{\exp(\beta_{0} + \beta_{1}x_{ij})}{\exp(\beta_{0} + \beta_{1}x_{ij}) + 1}$$

⇒ i.A. nur subjekt-spezifische Interpretation möglich und keine marginale Interpretation!

Interpretation im GLMM: Beispiel Log-Link

Betrachte Modell mit $Y_{ij}|\mathbf{b}_i \stackrel{u.}{\sim} Po(\mu_{ij})$ und $g(\mu_{ij}) = \log(\mu_{ij})$.

Konditionale Erwartung:

$$\mathbb{E}_{Y|b}(Y_{ij}|b_i) = \exp(\beta_0 + \beta_1 x_{ij} + b_i)$$

Marginale Erwartung:

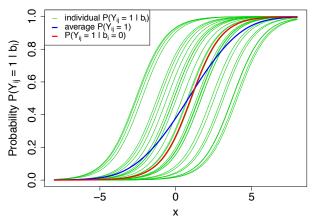
$$\begin{split} \mathbb{E}_{Y}(Y_{ij}) &= \mathbb{E}_{b}(\mathbb{E}_{Y|b}(Y_{ij}|b_{i})) \\ &= \exp(\beta_{0} + \beta_{1}x_{ij}) \cdot \mathbb{E}_{b}(\exp(b_{i}))) \\ &= \exp(\beta_{0} + \beta_{1}x_{ij}) \cdot \exp(\tau^{2}/2), \quad \text{da } b_{i} \stackrel{u.i.v.}{\sim} \mathcal{N}(0, \tau^{2}) \\ &= \exp((\beta_{0} + \tau^{2}/2) + \beta_{1}x_{ij}) = \exp(\beta_{0}^{*} + \beta_{1}x_{ij}) \end{split}$$

⇒ Log-Link ist eine Ausnahme! Hier ist für alle Variablen, die nur als fixed und nicht als random effect aufgenommen wurden, auch eine marginale Interpretation möglich!

Interpretation im Marginalen Modell:

- Keine Unterscheidung zwischen konditionaler und marginaler Betrachtung möglich
- Marginales Modell = GLM mit spezifischer Korrelationsstruktur
 ⇒ Interpretation analog zum GLM!
- ⇒ Populationsspezifische Interpretation der Parameter!

GLMMs vs. Marginale Modelle: Beispiel logistische Regression



⇒ Populationsspezifischer Effekt hier deutlich schwächer als subjekt-spezifische Effekte!

Fazit: Passendes Modell abhängig von Fragestellung

Beispiel: Untersuchung, ob eine neu entwickelte Behandlung einer Krankheit vorbeugt (logistische Regression)

Fragestellung 1: Verringert die Behandlung eines spezifischen Patienten dessen Erkrankungsrisiko? (Wichtig für behandelnden Arzt)

 \Rightarrow GLMM

<u>Fragestellung 2:</u> Wenn jeder in der Population das Treatment bekäme, wie würde sich das im Mittel auf das Erkrankungsrisiko auswirken? (Wichtig für Epidemiologen)

⇒ Marginales Modell

GLMMs & Marginale Modelle in R

- Modellwahl
- 2 GLMMs & Marginale Modelle
- 3 Parameterinterpretation: GLMMs vs. Marginale Modelle
- GLMMs & Marginale Modelle in R

GLMMs & Marginale Modelle in R

GLMMs:

- glmer {lme4}: Laplace-Approximation.
 bei nAGQ > 1 adaptive Gauß-Quadratur.
- glmmPQL {MASS}: PQL-Approximation (basierend auf lme).
 Wird intern von gamm {mgcv} verwendet.

Marginale Modelle:

• gee {gee}