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3. Biased coin designs and urn schemes

4. Stratification
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6. Unequal randomization
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Naive randomization

Doctor flips a coin: this is a natural procedure, but...

1. coin might be biased;

2. doctor knows what treatment is allocated, so double blindness is impos-
sible;

3. overemphasizes the aspect of uncertainty in front of the patient;

4. creates groups of different sizes, problematic in small trials.

Problem 1 can be avoided through the use of a reliable random number
generator; problems 2 and 3 if this is done by another person (so that the
doctor remains blind).
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Groups of different sizes in small trials

Suppose 2n patients are allocated to two treatment groups 1 and 2 independently with

equal probability. For the number in group 1, N1, we have

N1 ∼ Bin(2n,
1

2
).

The size Nmax of the larger group takes values in the set {n, n + 1, . . . , 2n} with

probabilities

Pr(Nmax = n) =
(2n
n

)(
1

2

)2n

Pr(Nmax = r) = 2
(2n
r

)(
1

2

)2n

, r = n+ 1, . . . , 2n.
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Example

Distribution of larger group size in a trial of 30 patients with two treatment groups formed

by simple randomization:
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Loss of power

Suppose we are designing an RCT to detect a clinically important difference
equal to a standard deviation at the 5% significance level. If 30 patients are
recruited then the power 1− β can be found as

1− β = Φ

(√
n1n2

30
− 1.96

)
.

If n1 = n2 = 15, 1− β = 78%.

If n1 = 20 and n2 = 10, 1− β = 73%.

If n1 = 24 and n2 = 6, 1− β = 59%.

Loss of power is not tolerable.
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Random permuted blocks

The problem of unbalanced group sizes can be solved by a form of restricted
randomization known as random permuted blocks (RPB):

• RPBs of fixed block length

• RPBs with random block length
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Random permuted blocks of fixed length

Consider the sequences of length 4 that comprise two 1s and two 2s:

1. 1 1 2 2 2. 1 2 2 1 3. 1 2 1 2
4. 2 2 1 1 5. 2 1 1 2 6. 2 1 2 1

A list of independent identically distributed random numbers is then genera-
ted, each element being chosen from {1, 2, 3, 4, 5, 6} with equal probability.
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Random permuted blocks of fixed length (ctd.)

• This results in a sequence in which each patient is equally likely to receive
treatment 1 or treatment 2 but the randomization has been restricted
to allow only sequences of 1s and 2s such that at no stage along that
sequence does the foregoing number of 1s and 2s differ by more than 2.

• 4 is a good compromise between blocks of length 2 (too great restriction)
and longer blocks (too large differences between group sizes, too many
candidate blocks).
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Random permuted blocks of fixed length: drawback

• If the trial is organized in such a way that the doctors involved in the study
know which treatments patients already in the study have received, then
after 3 patients (modulo 4) have been admitted, knowledge of previous
treatment allocations and the block length allows the next treatment to
be predicted with certainty.

• This means that selection bias may be a problem (and subsequently
also assessment bias, as in all cases where the doctor is not blinded).
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Solution to this problem: RPBs with random block length

For example blocks of sizes 4 (6 possible blocks) and 6 (20 possible blocks)

1. Generate a random number X from the set {4, 6} where Pr(X = 4) = 1
2.

2. If X = 4, generate a random number Y from the set {1, 2, 3, 4, 5, 6}
(each number equally likely) and set Si to be the block of length 4
corresponding to Y (see slide 8).

3. If X = 6, generate a random number Y from the set {1, 2, . . . , 20}
(each number equally likely) and set Si to be the block of length 6
corresponding to Y .
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RPBs with random block length: properties and remarks

• Each patient is equally likely to receive treatment 1 or treatment 2.

• The number of patients allocated to the two groups can never differ by
more than 3.

• The possibility of selection bias is negligible.
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Biased coin designs and urn schemes

• With RPBs with random block length, prediction of allocation is very
unlikely but not impossible.

• Alternative: stochastic methods based on the adjustment of the probabi-
lity of treatment allocation as the trial proceeds in such a way that the
probability of assignment to overrepresented treatments is reduced.

• Many variants, for example biased coin designs and urn schemes.
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Biased coin designs and urn schemes (ctd.)

• Denote as N1(n) (resp. N2(n)) the number allocated to treatments 1
and 2, respectively, after n patients have entered the study.

• Let the imbalance in treatment numbers be D(n) = N1(n)−N2(n).

• In biased coin designs and urn schemes, the probability of allocation of
the (n+ 1)th patient to treatments 1 and 2 depends on D(n).
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Principle of biased coin designs (Efron, 1971)

The biased coin design changes the allocation probability according to the
value of D(n):

If D(n) = 0, allocate patient n+ 1 to treatment 1 with probability 1/2.

If D(n) < 0, allocate patient n+ 1 to treatment 1 with probability P .

If D(n) > 0, allocate patient n+ 1 to treatment 1 with probability 1− P .

with 1
2 < P ≤ 1.
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Principle of biased coin designs (Efron, 1971)

We can easily show:

Pr(|D(n+ 1)| = j + 1| |D(n)| = j) = 1− P
Pr(|D(n+ 1)| = j − 1| |D(n)| = j) = P

• Some properties of this method can be discerned from known properties
of random walks.

• In the long run, the probability of exact balance is 2− P−1.

• With P = 1 exact balance is ensured, but the sequence is deterministic.
P = 2/3 or P = 3/4 may be more appropriate.
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Principle of urn schemes

• Patients are allocated by randomly choosing a ball from the urn and
assigning the patient to the treatment written on the selected ball.

• Initially the urn contains (2r) balls: r labeled 1 and r labeled 2.

• The selected ball is returned to the urn and s balls labeled with the
treatment which was not chosen, are added to the urn.
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Principle of urn schemes (ctd.)

It can be shown:

Pr(|D(n+ 1)| = j + 1| |D(n)| = j) =
1

2
− |D(n)|s

2(2r + ns)

Pr(|D(n+ 1)| = j − 1| |D(n)| = j) =
1

2
+
|D(n)|s

2(2r + ns)
.

Interpretation? Choice of r and s?
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Stratification

• RPBs are often used in practice in combination with stratification.

• Stratification is used to control the imbalance between the groups not
with respect to their size but with respect to their composition: although
randomization will, in principle, produce groups that are balanced with
respect to any prognostic factor, in practice, treatment groups that are
not alike with respect to important prognostic factors can and do occur.

• Example: We want to compare a new method of treatment (D) with an
existing method (U) to see if it improves the glycemic control of patients
under 16 years of age who suffer from type I diabetes. The outcome is
a normally distributed variable known as Hb1A1c (high value = poorer
control).
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Stratification: example (ctd.)

• Suppose the RCT will recruit 2n patients and within the patient po-
pulation being recruited a porportion θ are children (< 12 years) and
remaining patients adolescents.

• Suppose we form two groups of size n (e.g. using RPBs).

• Then the number of children in the group receiving D (resp. U), MD

(resp. MU), will have the distribution Bin(n, θ).

• On average, we expect θn children in each group. This is essentially
what we mean when we say that, in principle, randomization will produce
balanced groups.
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Stratification: example (ctd.)

• Suppose that the treatment has no effect.

• Suppose that the expected value of Hb1A1c is µC in children and µA in
adolescents with µA > µC.

• The expected value of Hb1A1c in groups D resp. U is

MDµC + (n−MD)µA
n

resp.
MUµC + (n−MU)µA

n
.

• The expected difference in treatments would then be MD−MU
n (µC − µA)

→ biased trial.
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Solution: using stratification

• Rather than allocate all patients in one process, we allocate patients of
different types separately.

• Example children/adolescents: we would prepare, using RPBs, not one
allocation but two: one for children and one for adolescents.

• Within each stratum one should not use simple randomization, otherwise
allocation is not affected by whether or not patients are grouped into
strata → use RPBs.
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Principle of minimization

• Suppose we have 4 prognostic factors with I, J,K,L levels, for example
in breast cancer: age (≤ 50 or > 50), stage of disease (I-II vs. III-IV),
time between diagnosis and effusion (≤ 30 months vs. > 30 months),
and pre- vs. post-menopausal. So I = J = K = L = 2.

• RPB within strata would ensure |nAijkl − nBijkl| ≤ 1
2b for each quadruplet

(i, j, k, l), where b is the maximum block size used in the RPB.

• This is often not necessary. Often it is sufficient that |nAi+++ − nBi+++|,
|nA+j++ − nB+j++|, |nA++k+ − nB++k+|, and |nA+++l − nB+++l| are small.
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Principle of minimization (ctd.)

1. The 1st patient is allocated by simple randomization.

2. Denote as nAijkl and nBijkl the number of patients with prognostic factors i, j, k, l

allocated to treatment A and B at some stage of the trial.

3. A new patient is entered to the trial who has prognostic factors w, x, y, z.

4. Form the sum (nAw+++ − n
B
w+++) + (nA+x++ − n

B
+x++) + (nA++y+ − n

B
++y+) +

(nA+++z − n
B
+++z).

5. If the sum is negative (resp. positive) then the new patient is allocated to A (resp. B)

with probability P > 0.5.

P < 1 protects against selection bias, but selection bias is very unlikely in this setting

anyway.
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Unequal randomization

• In some cases, it makes sense to gain extra experience in the use of
the (new) treatment by unequal randomization, i.e. one of the groups is
supposed to be larger than the other one.

• A side-effect is that it may even encourage recruitment in certain trials.

• The main inconvenience is that unequal group sizes lead to a lower
power. We will come back to this issue in Chapter A3.
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Unequal randomization: loss of power

• On slide 16 of Chapter A3, we will see that

1− β ≈ 1− Φ(z1−α/2 −
τ

σλ
)

where 1− β is the power and λ =
√

1
n1

+ 1
n2

.

• For groups of equal size n, n is obtained as 2λ−2.

• For a fixed total size, λ increases and the power 1 − β decreases with
increasing class imbalance.

• However, this decrease is almost negligible for imbalance no greater than
2:1.
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Unequal randomization: loss of power

Power 1−β plotted against ratio of group sizes (for n1+n2 = 168, τ/σ = 1
2,

α = 0.05, 1− β = 0.9 at ratio= 1):
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