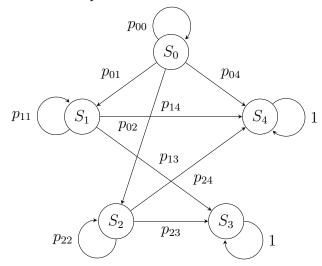
Aufgabe 1

Der Prozess, der zu einer Einweisung einer Person in ein Krankenhaus führt, kann durch eine Markov-Kette 1. Ordnung mit der folgenden Übergangsmatrix für die Zustände S_0, \ldots, S_4 beschrieben werden:

- (a) Zeichnen Sie den zur Übergangsmatrix gehörenden Markov-Graphen.
- (b) Interpretieren Sie die Vorgaben für $p_{03}=0$, $p_{12}=0$, $p_{21}=0$, $p_{33}=1$ und $p_{34}=0$.
- (c) Welche Zustände sind offen, welche abgeschlossen?
- (d) Geben Sie die Klasseneinteilung für die Markov-Kette an und bringen Sie die Übergangsmatrix in die kanonische Form.
- (e) Welche Zustände sind absorbierend?
- (f) Ist die Markov-Kette irreduzibel?

Lösung Aufgabe 1

(a) Markov-Graph



(b) Interpretationen:

 $p_{03}=0$: Eine gesunde Person kommt nicht ohne Erkrankung ins Krankenhaus $p_{12}=p_{21}=0$: entweder liegt eine schwere oder leichte Erkrankung vor; kein Wechsel der Erkrankung möglich.

 $p_{33}=1$ bzw. $p_{34}=0$: Da nur Einlieferung ins Krankenhaus modelliert wird, ist es unerheblich was nach der Einweisung passiert

(c) Abgeschlossene Zustände:

Kein anderer Zustand ist jeweils von S_3 und S_4 aus erreichbar, S_3 und S_4 sind also beide abgeschlossen.

Alle anderen Teilmengen aus S sind offen.

(d) Klasseneinteilung:

 S_3 und S_4 sind jeweils absorbierende Zustände und damit auch irreduzible Teilmengen von S. Die restlichen Zustände lassen sich nicht weiter in irreduzible Mengen aufspalten, sie bilden die Restmenge transienter Zustände $\{S_0, S_1, S_2\}$.

Daraus ergibt sich dann die umsortierte Übergangsmatrix:

$$S_{4} \quad S_{3} \quad S_{2} \quad S_{1} \quad S_{0}$$

$$S_{4} \quad \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$S_{2} \quad \begin{bmatrix} p_{24} & p_{23} & p_{22} & 0 & 0 \\ p_{14} & p_{13} & 0 & p_{11} & 0 \\ p_{04} & 0 & p_{02} & p_{01} & p_{00} \end{bmatrix}$$

- (e) S_3 und S_4 sind absorbierend, da sie einzeln abgeschlossen sind, i.e. kein anderer Zustand ist von ihnen aus erreichbar. (Kann man einfach erkennen, wenn Diagonal-Element in \mathbf{P} 1 ist)
- (f) Die Markov-Kette ist nicht irreduzibel, da nicht alle Zustände in S wechselseitig erreichbar sind; z.B. ist S_0 von keinen anderen Zustand aus erreichbar.