One of the most challenging aspects of dealing with the ongoing "big
data" explosion is the development of methods that can identify suitable
low-dimensional representations of very high dimensional data sets. The
unifying assumption of all such approaches is that high-dimensional
data are concentrated in a lower-dimensional subspace (a "manifold",
more generally) embedded in the original data space.
In this
seminar, we will introduce the mathematical basics of manifolds and
embeddings and will discuss both foundational papers on popular
dimensionality reduction methods and papers on current research problems
in this setting.
General Information
- Kickoff Meeting: 30.10.2020, 12:00 - 14:00
- Due to the current situation the seminar will be held online.
- Enrolment key: manil2021
- Trainer/in: Jann Goschenhofer
- Trainer/in: Moritz Herrmann
- Trainer/in: Katharina Rath
- Trainer/in: Fabian Scheipl