Einschreibeoptionen

Outline

The lecture deals with theoretical and practical concepts from the fields of statistical learning and machine learning. The main focus is on predictive modeling. The tutorial applies these concepts and methods to real examples for illustration purposes.

Class meets twice per week in the building at Schellingstr. 3

Mondays from 10–12 in R055, and Wednesdays from 12–14 in S007

Semester Plan:
  # 
  Date 
  Day 
                               Topic                             
01     09.4.    
   Mon.   
Intro.  (F)
02 11.4.
Wed.
Learning Theory  (M)
03 16.4.
Mon.
Exercise 1  (A)
04 18.4.
Wed.
Learning Theory  (M)
05 23.4.
Mon.
CART  (F)
06 25.4.
Wed.
RF  (F)
07 30.4.
Mon.
Exercise 2  (A)
08 02.5.
Wed.
TBA  (M)
09 07.5.
Mon.
Learning Theory  (F)
10 09.5.
Wed.
TBA  (M)
11 14.5.
Mon.
Exercise 3  (A)
12 16.5.
Wed.
Performance Estimation & Resampling  (F)
-- 21.5.
Mon.
holiday
13 23.5.
Wed.
Boosting a  (F)
14 28.5.
Mon.
Exercise 4  (A)
15 30.5.
Wed.
Boosting b  (F)
16 04.6.
Mon.
ROC  (F)
17 06.6.
Wed.
TBA  (M)
18 11.6.
Mon.
TBA  (M)
19
13.6.
Wed.
Exercise 5  (A)
20 18.6.
Mon.
GPs / Tuning / MBO  (F)
-- 20.6.
Wed.
cancelled
21 25.6.
Mon.
Exercises 6  (A)
22 27.6.
 Wed. Variable / Feature Selection  (F)
23
 02.7. Mon.
Exercises 7 / Q & A  (A)
 24  04.7.  Wed.  Q & A

Selbsteinschreibung (Teilnehmer/in)