Kursthemen

  • Analysis of Longitudinal Data

  • Contact information

    • Schedule

      Dates and Rooms

      Lectures Tuesday12:10 - 13:50  Room W 101, Prof.-Huber-Platz 2
      LecturesThursday14:10 - 15:50 
       Room D Z003, Geschwister-Scholl-Platz 1
      Exercise classes
      Tuesday12:00 - 14:00 c.t. Room W 101, Prof.-Huber-Platz 2
      Exercise classes
      Thursday14:00 - 16:00 c.t.
       Room D Z003, Geschwister-Scholl-Platz 1
      Tutorials
      Tuesday
       8:30 - 10:00
       Cip-Pool 42, Ludwigstraße 33

      Detailed schedule

      25.04.17 09.05.17 23.05.17 06.06.17 20.06.17 04.07.17 18.07.17
      27.04.17 11.05.17 25.05.17 08.06.17 22.06.17 06.07.17 20.07.17
      02.05.17 16.05.17 30.05.17 13.06.17 27.06.17 11.07.17 25.07.17
      04.05.17 18.05.17 01.06.17 15.06.17 29.06.17 13.07.17 27.07.17







      Lecture Exercise class Holidays No class Tutorial


      Remark: These are preliminary schedule details. The concrete distribution of courses might still be adjusted.

      • Content

        In many applications one is confronted with data for which the variable of interest is measured repeatedly for the same subjects under different conditions. Longitudinal data are an important special case for which the variable of interest is measured for several subjects repeatedly over time. These kind of data have a number of specific characteristics, which have to be accounted for in their description, modeling and in inference.

        In this class, the basic concepts of the analysis of longitudinal data are covered. This includes the presentation of different statistical models which are motivated by different questions of interest. Marginal models as well as mixed effects (also known as random effects) models for both Gaussian and discrete response variables are discussed.
        In the lab, the students are encouraged to apply the lecture contents to real data in order to deepen the understanding of the discussed concepts and to become more familiar with the learned methods and techniques.
        • Course requirements

          The lecture is intended for Statistics Master students.

          Previous knowledge:
          • Lecture "Lineare Modelle"
          • Lecture "Generalisierte Regression"
          • Basic knowledge in R
          Additionally useful: Lecture "Schätzen und Testen I"
          • Organisation and language

            • The lectures and exercise sessions are held in English.
              Die Vorlesung und die Übung werden auf Englisch gehalten.
            • There will be English and German versions of all exercise sheets and the exam.
              Es wird für alle Übungsblätter und für die Klausur eine englische und eine deutsche Version geben.
            • You can always ask questions in German.
              Sie können jederzeit Fragen auf Deutsch stellen.
            • As an additional service, we offer a voluntary German 'Tutorium'.
              Als Zusatzangebot bieten wir ein freiwilliges deutsches Tutorium an.

            • Lecture

              Course material

              Topic Slides
              Supplementary material / Comments
              1. Introduction  Chapter 1

              2. Exploring and displaying longitudinal data  Chapter 2

              3. The longitudinal linear mixed model Chapter 3

              4. Estimation in the longitudinal LMM Chapter 4

              5. Inference in the longitudinal LMM Chapter 5

              6. Flexible extensions of the LLMM  Chapter 6

              7. Model building and model choice  Chapter 7

              8. Non-normal longitudinal data  Chapter 8

              9. The generalized linear mixed model  Chapter 9

              10. Marginal models for non-normal responses (GEE)  Chapter 10

              11. Missing values  Chapter 11

              12. Selected topics  Chapter 12


              • Exercise classes

                Exercise sheets
                Übungsblätter SolutionsDataSupplementary material / comments
                Useful R-code and -functions
                Sheet 1
                Blatt 1
                 Solution 1b), R-Code
                 rats.csv
                 Data description 1 and 2, semiparametric smoothing
                 
                Sheet 2
                Blatt 2
                 R-Code
                 rats.long.RData
                 
                 Code to use, for nlme
                Sheet 3
                Blatt 3
                 R-Code


                 
                Sheet 4
                Blatt 4
                 R-Code
                 antibiotics.RData
                 Data description
                 Code to use, variogram code,
                useful functions
                Sheet 5
                Blatt 5
                 R-Code
                 vitamin.RData
                 Data description
                 Useful functions
                Old exam
                Altklausur
                   NOT discussed: Exercises 2 and 5B/D (topics not fully covered from lecture, yet), Bonus Exercise 6

                Sheet 6
                Blatt 6
                 R-Code


                 Useful functions
                Sheet 7
                Blatt 7
                 R-Code
                 leprosylong.txt  
                Many thanks to Jona Cederbaum for providing exercise sheets and material!
                • Literature

                  Primary literature:

                  • Diggle, Heagerty, Liang, and Zeger (2002). Analysis of longitudinal data. Oxford University Press.
                  • Fitzmaurice, Laird, Ware (2004). Applied longitudinal analysis. Wiley.
                  • Molenberghs and Verbeke (2005). Models for Discrete Longitudinal Data. Springer.
                  • Verbeke and Molenberghs (2000). Linear Mixed Models for Longitudinal Data. Springer.

                  Secondary literature:

                  • Final exam

                    General Information

                    By passing the exam master students in statistics can achieve the following number of ECTS-credits:

                      • 6 ECTS-Credits
                        Examination: 90 minute exam
                        Prüfungsform: 90 Minuten Klausur


                    For the exam please bring along:
                    Bitte bringen Sie folgende Unterlagen zur Klausur mit:

                      • Student ID-Card / Studentenausweis
                      • Photo ID / Lichtbildausweis


                    Please also note the 'Regelungen zu Prüfungen' of the statistic department.
                    If you are prevented from participating in the exam for reasons you do not have personally inflicted, please inform the examination office in advance.
                    Sollten Sie aus nicht selbst zu vertretenden Gründen an der Teilnahme zur regulären Klausur verhindert sein, so machen Sie diese Gründe bitte vorab beim Prüfungsamt geltend.

                    DatumUhrzeit Raum
                     Exam / Klausur
                     08.08.2017
                     10 - 11:30 Uhr s.t.
                     E 004, Geschwister-Scholl-Pl. 1
                     Inspection of the exam / Klausureinsicht 14.08.2017
                     10 - 11 Uhr s.t.
                     Room 140, Ludwigstr. 33
                     Retry exam / Nachholklausur
                     12.10.2017 10 - 11:30 Uhr s.t.
                     E 004, Geschwister-Scholl-Pl. 1
                     Inspection of the retry exam / Nachholklausureinsicht 23.10.2017 10 - 11 Uhr s.t.
                     Room 147, Ludwigstr. 33

                    Results of the main exam / Ergebnisse der Hauptklausur

                    You may find your main exam grade here. The plot below shows the overall distribution of exam results.
                    Ihre Hauptklausurnote können Sie hier einsehen. Die untenstehende Graphik zeigt die Gesamtverteilung der Klausurergebnisse.


                    Results of the retry exam / Ergebnisse der Nachholklausur

                    You may find your retry exam grade here. The plot below shows the overall distribution of exam results.
                    Ihre Nachholklausurnote können Sie hier einsehen. Die untenstehende Graphik zeigt die Gesamtverteilung der Klausurergebnisse.


                    Registration for the retry exam / Anmeldung zur Nachholklausur

                    Register here for the retry exam.

                    Remark 1: Following a generic template, the registration form is in german language. If you have any problems, please don't hesitate to contact me.

                    Remark 2: Your registration will not be confirmed per mail, but you are able to check your registration status in the data base.

                    Registration requirement: Registration for the exam is obligatory. Only registered course participants may participate in the exam.

                    Anmeldepflicht: Seit diesem Wintersemester ist eine Anmeldung zur Klausur verbindlich. Nur angemeldete Teilnehmer dürfen an der Klausur teilnehmen.


                    Auxiliary material / Hilfsmittel

                    The following auxiliary material can be used during the exam
                    Als Hilfsmittel zur Klausur sind folgenden Hilfsmittel zugelassen

                      • Calculator / Taschenrechner
                      • Two sheets with handwritten notes (front and back) / Zwei beidseitig beschriebene Blätter mit handschriftlichen Notizen
                      • A dictionary if necessary / Ein Wörterbuch, falls notwendig